
A Genetic Algorithm for Multi-Component Optimization
Problems: the Case of the Travelling Thief Problem

Daniel K. S. Vieira
Federal University of Viçosa, Brazil

daniel.sa@ufv.br

Marcus H. S. Mendes
Federal University of Viçosa, Brazil

marcus.mendes@ufv.br

ABSTRACT
Real-world problems many times are characterized by be-
ing composed by multiple interdependent components. In
this case, benchmark problems that do not represent that
interdependency are not a good choice to assess algorithms
performance. Recently in the literature a benchmark prob-
lem called Travelling Thief Problem was proposed to bet-
ter represent real-world multi-component problems. TTP is
a combination of two well-known problems: 0-1 Knapsack
Problem (KP) and the Travelling Salesman Problem (TSP).

This paper presents a genetic algorithm-based optimization
approach called Multi-Component Genetic Algorithm (MCGA)
for solving TTP. The ideia is solve the overall problem in-
stead of each sub-component separately. Starting from so-
lution for the TSP component, obtained by the Chained
Lin-Kernighan heuristic, the MCGA applies the evolution-
ary process (evaluation, selection, crossover, and mutation)
iteratively using different operators for KP and TSP com-
ponents. The MCGA was tested on some representative
instances of TTP available in the literature. The compar-
isons show that MCGA obtains competitive solutions for
TTP instances with a number of cities between 51 and 783.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization
; I.2.8 [Problem Solving, Control Methods, and Search]:
Multi-component combinatorial problem

General Terms
Algorithms

Keywords
Travelling Thief Problem; Genetic Algorithm; Combinato-
rial problem optimization

1. INTRODUCTION

Classic problems in computer science have been proposed
and these days are studied to define strategies that obtain
a good solution efficiently on real-world problems. Many of
these problems belong to NP-hard class, which means that
they are combinatorial problems that you cannot find the
best solution in a polynomial time, implying that in large
instances it is not possible to get the best solution due to the
necessary time to process each possible solution. Because of
that heuristics are developed to obtain a satisfactory solu-
tion in an acceptable time.

According to Bonyadi et al. [2] real-world problems often
have interdependent components and these should not be
solved separately. This correlation should be considered to
get better solutions to the overall problem.

In order to cover the complexity of a real-world problem, a
new problem called Travelling Thief Problem (TTP) [2] was
proposed. It is a combination of two well-known problems
that are the Knapsack Problem (KP) and the Travelling
Salesman Problem (TSP).

Some strategies have been proposed with the aim to solve
TTP. Faulkner et al. [4] presents algorithms that focus on
manipulating the KP component with the TSP component
being obtained by the Chained Lin-Kernighan algorithm
(CLK) [1]. Bonyadi et al. [3] uses a co-evolutionary ap-
proach called CoSolver where different module are responsi-
ble for each component of the TTP and these communicate
with each other combining solutions to get a overall solu-
tion to the problem. In this way the CoSolver attempts to
solve the TTP manipulating both components at the same
time instead of get a solution for one component given the
solution of other component. Mei et al. [5] seeks large-
scale TTP instances proposing complexity reduction strate-
gies for TTP with fitness approximation schemes and apply
this techniques in a Memetic Algorithm which outperforms
the Random Local Search and Evolutionary Algorithm pro-
posed by Polyakovskiy et al. [7]. Oliveira et al. [6] developed
a Tabu Search (TS) approach with a 2-OPT local search that
shows competitive performance for very small instances of
TTP.

This paper proposes a new algorithm based on Genetic Al-
gorithm (GA) concept called Multi-component Genetic Al-
gorithm (MCGA) to solve small and medium sizes of TTP
instances which has four basic steps in each iteration: evalu-
ation of the solution (individual) to know how good this solu-

tion is; selection of solutions based on their performance (fit-
ness); crossover the solutions to create new solutions (chil-
dren) based on the features (chromosome) of existing solu-
tions (parents); disturb the solutions applying some muta-
tion operator that change their features (change some alle-
les of the genes of their chromosome). After some iterations
(generations) the algorithm tends to achieve good solutions
to the problem.

The article is organized as follows. The Section 2 describes
the TTP and its specifications. In Section 3 the Multi-
component Genetic Algorithm (MCGA) is defined. The
Section 4 shows the methodology. Finally, we present the
conclusion in Section 5 as well as the possibilities for future
work.

2. TRAVELLING THIEF PROBLEM
According to Polyakovskiy et al. [7], TTP is defined as
having a set of cities N = {1, . . . , n} where the distance dij
between each pair of cities i and j is known, with i, j ∈ N .
Every city i but the first has a set of items Mi = {1, . . . ,mi}.
Each item k in a city i is described by its value (profit) pik
and weight wik. The candidate solution must visit each city
only once and return to the starting city.

Additionally, items can be collected in cities while the sum of
the weight of the collected items does not exceed the knap-
sack maximum capacity W . A rent rate R must be paid by
each time unit that is used to finish the tour. υmax and υmin
describes the maximum and minimum speed allowed along
the way, respectively.

yik ∈ 0, 1 is a binary variable equals to 1 if the item k is
collected in the city i. Wi specifies the total weight of the
collected items when the city i is left. Hence, the objective
function for a tour Π = (x1, . . . , xn), xi ∈ N and a picking
plan P = (y21, . . . , ynmi) is defined as:

Z(Π, P) =

n∑
i=1

mi∑
k=1

pikyik

−R

(
dxnx1

υmax − νWxn

+

n−1∑
i=1

dxixi+1

υmax − νWxi

) (1)

where ν = υmax−υmin
W

. The aim is to maximize Z(Π, P).
The equation is summarized in penalize the profit gains from
collected items with a value that represents the total travel
time multiplied by the renting rate R.

The figure 1 shows an example of TTP where there is the
same number of items for each city as the test instances
provided by Polyakovskiy et al. [7]. This case has 2 items
to each city (except the first city, that does not have items)
and 3 cities in total. Each item Iij(pij , wij) is described as
being the item j of the city i that has a value pij and a
weight wij . Assuming the knapsack capacity W = 10, the
renting rate R = 1, υmax = 1 e υmin = 0.1. A feasible
solution for this problem is P = (0, 1, 0, 1) and Π = (1, 2, 3),
describing that the items I22, I32 which are in the cities 2
and 3, respectively, will be collected, making a tour starting

from the city 1 goes to the city 2, and then goes to the city
3, and finally returns to the city 1. This solution results in
Z(Π, P) ≈ −28.053.

3
I
31
(15,2)

I
32
(10,1)

21

8

2

 4

I
21
(30,5)

I
22
(65,9)

Start

Figure 1: TTP example.

Note that in this example if only the TSP component of the
problem is considered, all the possible solutions have the
same cost since all connections between the cities will be
used anyway. But considering the overall problem, it can
be seen that the order of the tour makes influence in the
solution cost due to the variation of the time that an item is
kept into the knapsack. In other words, a heavy item picked
at the start of the tour influences the travelling speed for a
longer time compared to the same item picked at the end
of the tour, making the solution slower and increasing the
cost.

3. MULTI-COMPONENT GENETIC ALGO-
RITHM

The proposed MCGA1 has a different encoding type for each
component of the TTP. The TSP component is encoded enu-
merating the city indices in order starting from the city 1
and ending the tour at the same city. The KP component is
encoded using a binary array with the size of existing items,
the items are ordered according to the city that the items
belong to. If the problem has 5 items per city the first five
genes make reference to the items of the city two (since the
first city, by definition, does not have items). The Figure 2
shows a graphical representation of the chromosomes that
composes the individual.

The initial population is obtained using the Chained Lin-
kernighan [1] (CLK) for the TSP component and all items
unpacked (KP component). After generating the initial pop-
ulation an iterative process starts with the selection the
individuals who will pass through a evolutionary process
based on their fitness. In this step was used the tourna-
ment method, that consists of given a tournament size n,
n individuals are selected to be compared with each other
and the best individual is selected to the next step. This
procedure repeats until the size of the selected population
reaches the size of the original population (in this case). The
Algorithm 1 shows a k-tournament where s∗ individuals are
selected from population H.

The crossover step performs the creation of new individ-
uals (children) based on the chromosomes of the existing
individuals (parents). Due to the multi-component charac-
teristic of the TTP a different crossover method was used

1The source code can be found at https://github.com/
DanielKneipp/GeneticAlgorithmTravelingThiefProblem

...

... ynmiy21

xnx1

KP component chromosome

TSP component chromosome

Individual

x1

Figure 2: Graphical representation of the MCGA
individual encoding.

Algorithm 1 Tournament (H, s∗, k)

1: for i := 0 to s∗ − 1 do
2: H subset← k random individuals from H
3: add to H∗ the best individual of H subset
4: end for
5: return H∗

on each component of the problem. For the KP component
a crossover operator with N-points was used (the number
of points changes for each configuration tested and will be
defined in Section 4). This operator combine the picking
plan of two parents in two children in a way that one child
receives the alleles of one parent until a point is reached,
after that receives the alleles from the other parent. In the
crossover while the child c1 receives the alleles from a par-
ent pi, the child c2 receives the alleles from a parent pj ,
where ∀ i, j ∈ {1, 2, . . . , s} : i 6= j, with s being the number
of parents. The Algorithm 2 shows the N-points crossover
operator.

Algorithm 2 N-points crossover (Pp1 , Pp2)

1: s← size of the chromosome.
2: Points← n different loci (positions) in the chromosome

sorted in increasing order
3: j ← 0
4: for i := 0 to s− 1 do
5: if j < n, i = Points[j] then
6: j ← j + 1
7: end if
8: if j is an even number then
9: Pc1 [i]← Pp1 [i]

10: Pc2 [i]← Pp2 [i]
11: else
12: Pc2 [i]← Pp1 [i]
13: Pc1 [i]← Pp2 [i]
14: end if
15: end for
16: return Pc1 , Pc2

For the TSP component a crossover operator called Order-
based is used to combine the tours of two parents without

generating invalid tours. It uses a random-generated binary
mask and fill the genes of the children 1 and 2 with the
genes of the parents 1 and 2, respectively, when the value
mask is equal to 1. The remaining genes in parent 1 (that
have the mask value equal to 0) are sorted in same order as
they appear in parent 2 and the alleles of those sorted genes
are used to fill in the genes in child 1 that are still empty.
The same happens to child 2 but in this case the genes of
the parent 2 are sorted according to parent 1 order. This
operator is detailed in Algorithm 3.

Algorithm 3 Order-based crossover (Πp1 , Πp2)

1: s← size of the chromosome.
2: Mask ← random array of bits with size s
3: for i := 0 to s− 1 do
4: if Mask[i] = 1 then
5: Πc1 [i]← Πp1 [i]
6: Πc2 [i]← Πp2 [i]
7: end if
8: end for
9: L1 ← list of genes in Πp1 that are in a position i that

the Mask[i]= 0
10: L2 ← list of genes in Πp2 that are in a position i that

the Mask[i]= 0
11: Sort L1 so that the genes appear in same order as in

Πp2

12: Sort L2 so that the genes appear in same order as in
Πp1

13: Fill in the still empty genes of Πc1 with the L1

14: Fill in the still empty genes of Πc2 with the L2

15: return Πc1 , Πc2

After the crossover operators are applied the population size
doubles due to the creation of two children for each two par-
ents. Hence, a selection procedure is applied to decrease the
population back to its original value. This second selection
step also uses the Tournament method as shown in Algo-
rithm 1 using as population size the number of individuals
before the crossover step.

As well as the crossover step, the mutation step has a dif-
ferent operator for each component of the problem. To mu-
tate the KP component a simple Bit-flip operator was used,
which given an item i and a random value ri ∈ [1, 0], i := 0 if
i = 1 and r > p, p being the probability of item be removed
from oo added to the knapsack. Of course for each item a
different ri is generated.

2-OPT was used to mutate the TSP component. This muta-
tion operator swap a pair of edges in the tour. A way to do
that is to given two vertexes v1 and v2 (not being the first
or the last vertex, which reference the same city), it made a
copy of the tour until v1, than the sub-tour [v1, v2] is copied
in reverse order, than the rest of the tour is copied. It can
be seen in the Algorithm 4 assuming that the index range
of the chromosome starts from 0.

In the TSP the order of the tour does not impact the solu-
tion cost since the distance from a city c1 to another city c2
is the same of c2 to c1. However, in TTP this change affect
the time that an item will be carried, consequently affecting
the cost. Therefore, the 2-OPT operator can cause a huge
change on the individual. For this reason the mutation oper-

Algorithm 4 2-OPT mutation (Πp)

1: s← size of the chromosome.
2: v1 ← random integer number ∈ [1, s− 3]
3: v2 ← random integer number ∈ [v1 + 1, s− 2]
4: for i := 0 to v1 − 1 do
5: Πc[i]← Πp[i]
6: end for
7: for i := v1 to v2 do
8: Πc[i]← Πp[v2 − (i− v1)]
9: end for

10: for i := v2 + 1 to s− 1 do
11: Πc[i]← Πp[i]
12: end for
13: return Πc

ators are not applied always for all individuals. The Bit-flip
has 65% chance to be applied, 2-OPT has 17, 5% and it has
17, 5% chance of both operators to be applied.

We use elitism to maintain a set of the best individuals (also
called elites) in each generation to the next generation. In
the mutation step the best individuals are not included in
the procedure. In the crossover steps before the procedure
starts the set of best individuals are ensured to be part of
H∗, note that this best individuals are included in the tour-
nament.

The Equation 1 is used to evaluate the individuals. If an
individual is invalid (sum of the weight of picked items ex-
ceed the knapsack capacity) a correction procedure is ap-
plied which removes the worst items of the individual until
he becomes valid. The worst items are characterized as hav-
ing the lowest values of pi

wi
, where pi is the value of the item

i and wi its weight.

The MCGA combine all these operator as shown in the Al-
gorithm 5 where K and Q stores the MCGA configuration
and the stop conditions, respectively. Inside K is specified
the population size s; two different tournament sizes ts, tc,
for the selection step and the tournament after the crossover,
respectively; three number of elite solutions es, ec, em, for
the selection step, tournament procedure after the crossover
and the mutation step, respectively; a number of points nc
for the N-points crossover operator; the probability p for
Bit-flip mutation operator.

Algorithm 5 Multi-component Genetic Algorithm (K, Q)

1: O ← GenerateInitialPopulation(K.s)
2: EvaluateIndividuals(O)
3: while ¬Q do
4: O ← Select(O, K.s, K.ts, K.es)
5: Θ ← Crossover(O, K.nc)
6: EvaluateIndividuals(Θ)
7: O ← {O,Θ}
8: O ← Select(O, K.s, K.tc, K.ec)
9: O ← Mutate(O, K.p, K.em)

10: EvaluateIndividuals(O)
11: end while
12: return BestIndividual(O)

4. METHODOLOGY AND RESULTS

A subset of 9720 TTP benchmark instances, proposed by
Polyakovskiy et al. [7], was used in the experiments. These
instances have the number of cities ranging from 51 to 85,900
(81 different sizes); the number of items per city F ∈ {1, 3, 5, 10}
(called item factor); ten capacity categories (varying the
knapsack capacity); three KP types: uncorrelated (the val-
ues of the items are not correlated with their weights), un-
correlated with similar weights (same as the uncorrelated but
the items has similar weights) and bounded strongly corre-
lated (items with values strongly correlated with its weights
and it is possible to exist multiple items with the same char-
acteristics).

Different configurations for the MCGA was defined due to
the variety of the problem sizes. They are:

C1: 150 individuals, Tournament size of both selection pro-
cedures equal to 2, number of elites of both selection
steps and the mutation step equal to 15, number of
points for the N-point crossover operator equal to 1,
and the probability p for the Bit-flip mutation opera-
tor equal to 0.5%. The stop conditions are 10 minutes
of runtime or 10000 generations without improvement.
The CLK heuristic has no runtime limit;

C2: 200 individuals, Tournament size of both selection pro-
cedures equal to 2, number of elites of both selection
steps and the mutation step equal to 12, number of
points for the N-point crossover operator equal to 3,
and the probability p for the Bit-flip mutation opera-
tor equal to 0.2%. The stop condition is 10 minutes of
runtime. The CLK heuristic has no runtime limit;

C3: 80 individuals, Tournament size of both selection pro-
cedures equal to 2, number of elites of both selection
steps and the mutation step equal to 6, number of
points for the N-point crossover operator equal to 3,
and the probability p for the Bit-flip mutation operator
equal to 0.2%. The stop conditions are 50 minutes of
runtime. The CLK heuristic has limit of the runtime
tCLK = 0.6×tMCGA

s
, where tMCGA is the total runtime

(50 minutes in this case) and s is the population size
(80 in this case).

Note that the MCGA runtime includes the generation of the
initial population procedure. Therefore, the time spent by
the CLK is taken into account.

In order to compare the MCGA results with the TS based
heuristic presented by Oliveira et al. [6] we ran the experi-
ments using a computer with CPU Intel Core i7 4810MQ, 8
GB of RAM and Windows 8.1 OS. The MCGA was imple-
mented using the C++ programming language.

The Table 1 shows the mean of the objective function values
considering 30 runs of the algorithms: (1 + 1) Evolutionary
Algorithm (EA) approach presented by Polyakovskiy et al.
[7]; MCGA with C1 configuration; a TS heuristic [6] that
according to the authors it has a deterministic characteris-
tic, in other words, the results of different runs in the same
conditions are always the same. The instances used have
relative small sizes, with the number of cities (n) varying
from 50 to 100, a item factor of 1, 3, 5 and 10, all KP types

t and with the knapsack capacity always being of category
10 totaling 60 instances.

The results show that MCGA outperforms the TS in 40%
and EA in 98.3% of the tested instances. TS had a notable
performance in instances with 53 cities However, it showed
a strange behavior in some instances of 99 cities. In the
instances with 98 items TS had significantly better results
(mean of 7.477 times compared to MCGA) while it had a
very poor performance in instances with 490 and 980 items
(MCGA achieved results 5.092 times higher on average).

A coefficient c, for each algorithm, was calculated for com-
paring their performance on the 60 instances presented in
Table 1. The calculation of these coefficients was made to
avoid the influence of the magnitude variations among dif-
ferent TTP instances in the overall comparison results. The
coefficient c is defined by c = v

z
, where v is the objective

value obtained by the algorithm to a given instance and z is
the best (highest) objective value to that instance. It makes
c ∈ [a, 1], where a is the coefficient of the worst (smallest)
objective value comparing the three algorithms. c will be
negative if v < 0.

Table 1 shows the mean of the coefficients c (considering all
60 instances) for each algorithm. We can note that MCGA
has a more consistent performance in the experiments (mean
value of c for MGCA is more close to 1).

To compare MCGA with some heuristics proposed by Faulkner
et al. [4] changes on the experiment conditions were made.
The computer used has two Intel Xeon E5-2630 v3 totaling
32 cores, 128 GB of RAM and Ubuntu 14.04 LTS OS. The
GA configuration used is the C2. The tests conducted by
Faulkner et al. [4] show results of the mean of 30 indepen-
dent runs, different of the tests made using the MCGA and
presented in the Table 3 that are the mean of 10 indepen-
dent runs. A subset of the instances selected by Faulkner et
al. [4] was used which consists 3 different numbers of cities n
between 195 and 3038, two item factors F ∈ 3, 10, all three
types of knapsacks t and two capacity categories C being
equal to 3 or 7.

The results presented in the Table 3 compares MCGA to a
local search algorithm called S5 (showed be highly compet-
itive in many tested instances) that run CLK and then an
iterative greedy method heuristic PackIterative until time is
up and a mixed integer programming (MIP) based approach.

It can be seen that MCGA outperforms the other algorithms
in almost every instance derived from the TSP problem com-
ponent rat with 783 and 195 cities. On the other hand for
the problem with 3038 cities it has clearly underperform-
ing making explicit that the MCGA performance is visible
linked with the TSP component characteristics, which can
be the distances pattern or the problem size or maybe both.
The overall result shows that MCGA obtained better aver-
ages in 52.78% of the presented instances, the S5 outper-
forms the other algorithms in 36.11% (due to its results in
the instances with 3038 cities) and the MIP based approach
was the best in 11.11% of the benchmark problems.

An analyses of the algorithm evolution was performed to

Table 1: MCGA performance compared to the Tabu
Search approach [6] and EA [7]. The instances with
100 cities refers to the kroA100 instances.

n m t MCGA EA TS

5
1

5
0

bsc 11396.3 9604.35 11180.05
unc 6999.51 6130.09 7167.77
usw 5926.52 5418.48 5959.69

1
5
0

bsc 27481.2 24121.29 26997.77
unc 21949.6 18780.23 21522.96
usw 18362.2 14843.1 17927.85

2
5
0

bsc 44628.4 33708.71 49781.12
unc 33452.7 29508.08 34000.52
usw 32826.8 26483.19 31747.54

5
0
0

bsc 14641.9 7874.7 15331.3
unc 8355.08 7979.65 9151.72
usw 7863.13 7231.54 8655.27

5
2

5
1

bsc 41971.7 31767.99 49373.15
unc 22171.9 20754.83 23589.93
usw 24238.2 23208.87 26940.18

1
5
3

bsc 82137.8 55942.48 87235.28
unc 39862.4 39386.03 42608.34
usw 41719.6 40536.51 47572.81

2
5
5

bsc 160041 117278.61 179376.75
unc 87094 86049.77 94354.89
usw 81237.9 79072.25 93972

5
1
0

bsc 99301.2 75874.84 103220.98
unc 72161.9 62588.19 72825.86
usw 63153.4 52793.76 64960.24

7
0

6
9

bsc 12132.6 10212.02 12048.55
unc 13712.9 12234.81 14356.49
usw 10677.5 9077.16 10626.42

2
0
7

bsc 52973.9 42385.48 49422.32
unc 35069.6 30231.71 34612.74
usw 32349 28591.82 29398.59

3
4
5

bsc 89053.1 69353.76 89075.65
unc 54735.7 48568.99 49533.55
usw 51838.3 44832.2 51504.4

6
9
0

bsc 181097 142550.43 159478.11
unc 110046 94962.56 96015.28
usw 103793 89263.78 103315.15

9
9

9
8

bsc 22637 19910.91 159018.64
unc 15287.2 13975.62 119652.97
usw 13942.3 12527.14 105671.57

2
9
4

bsc 66754.1 57418.5 82861.53
unc 43824.9 39675.44 69423.99
usw 41874.2 37202.45 58207.53

4
9
0

bsc 117066 93366.59 17335.31
unc 77495.2 70168.3 12365.18
usw 67510 60821.47 12972.58

9
8
0

bsc 232309 196269.46 51109.27
unc 149729 138636.78 34560.47
usw 137806 126800.27 39954.74

1
0
0

9
9

bsc 19747.5 14749.02 20353.12
unc 14773.2 14149.22 15432.37
usw 13958.9 13879.76 14133.86

2
9
7

bsc 54174.1 39072.07 58010.61
unc 42989.5 41997.23 44628.82
usw 40913.1 39463 43294.08

4
9
5

bsc 93475.2 73185.28 79311.13
unc 74733.2 73997.67 77778.99
usw 66709.8 66751 71705.39

9
9
0

bsc 176962 167126.14 171872.05
unc 150619 148490.64 143345.51
usw 135309 133913.51 141737.38

Table 2: Mean of the coefficients calculated from the
results presented in Table 1.

MCGA EA TS
Mean coef. 0.913212685 0.795308198 0.906058209

Table 3: MCGA performance compared to the S5
heuristic and MIP approach on a subset of the 72
instances used by Faulkner et al. [4].

n m t C MCGA S5 MIP

1
9
5

5
8
2

b
sc 3 84385.5 86516.9 86550.9

7 117426 110107 110555

u
n
c 3 60017.3 56510.6 56518

7 75303.3 70583.8 70728

u
sw 3 30871.8 28024.7 28061.5

7 54357 48023 48332

1
9
4
0

b
sc 3 229432 227063 227965

7 384304 359614 359527

u
n
c 3 174002 157297 157532

7 249938 227502 227637

u
sw 3 115337 102568 103417

7 191539 168931 169168

7
8
3

2
3
4
6

b
sc 3 284904 263725 263691

7 481395 435157 433814

u
n
c 3 206739 189949 189671

7 286227 263367 263258

u
sw 3 139672 130409 130901

7 232023 213893 213943

7
8
2
0

b
sc 3 939702 940002 940141

7 1483880 1425821 1424650

u
n
c 3 577930 637793 637487

7 900138 910032 909343

u
sw 3 393142 434180 435368

7 702622 698730 699101

3
0
3
8

9
1
1
1

b
sc 3 816356 1217786 1214427

7 1360530 1864413 1858773

u
n
c 3 58605 782652 780574

7 404174 1093259 1090977

u
sw 3 121877 568509 567102

7 375058 873670 869420

3
0
3
7
0

b
sc 3 1113600 4023124 4006061

7 2362480 5895031 5859413

u
n
c 3 -1531310 2595328 2589287

7 -717599 3603613 3600092

u
sw 3 -748034 1800448 1801927

7 -434909 2863437 2856140

-5.5x106
-5x106

-4.5x106
-4x106

-3.5x106
-3x106

-2.5x106
-2x106

-1.5x106
-1x106

-500000
 0

 0 50 100 150 200 250 300 350 400 450

Fi
tn

es
s

No. of generations

MCGA - C2

Figure 3: MCGA with C2 configuration in the in-
stance pcb3038_n30370_uncorr_07.

-6x106
-5x106
-4x106
-3x106
-2x106
-1x106

 0
 1x106
 2x106

 0 2000 4000 6000 8000 10000 12000 14000

Fi
tn

es
s

No. of generations

MCGA - C3

Figure 4: MCGA with C3 configuration in the in-
stance pcb3038_n30370_uncorr_07.

further investigate the MCGA behavior on instances with
3038 cities. We discovered that for many instances like
the pcb3038_n30370_uncorr_07 (3038 cities, 10 items per
city, uncorrelated type and capacity category 7) the per-
formance was limited by the time restriction. It can be
seen in Figure 3 that MCGA convergence was not attained.
Probably, better solution can be found with more time.
In face of this, a configuration with more time (C3) was
used to analyze the MCGA behavior solving the instance
(pcb3038_n30370_uncorr_07). We limited the CLK heuris-
tic runtime (set to 37.5 seconds to generate each individ-
ual) in order to guarantee considerable runtime to MCGA.
Moreover, we used the same 32 cores computer that ran the
previous experiment.

The Figure 4 shows that MGCA achieves significantly higher
fitness value if more time is available. However, this value
still remains below the S5 and MIP results. Therefore, the
amount of time is not the only MCGA feature that has to
be improved.

5. CONCLUSION
The existing interdependence in a multi-component problem
proves challenging due to the optimal solution for a compo-
nent do not imply in a good solution for the overall problem.

In this paper a Genetic Algorithm approach called Multi-
component Genetic Algorithm (MCGA) was proposed at-
tempting to solve a new multi-component combinatorial prob-
lem called Travelling Thief Problem (TTP). It applies mu-
tation and crossover operators for each component of the
problem.

The experiments showed that MCGA can obtain compet-
itive solution for TTP instances with a number of cities
varying between 51 and 783 cities compared to other algo-
rithms in the literature. Further investigation is required to
improve its performance on larger instances. A possible im-
provement is reduce the time consumption using new strate-
gies to evaluate the individuals or new operators of mutation
and crossover specific developed for TTP that consider the
interaction between the components. Tuning the MCGA
parameters may lead to significantly higher objective values
in instances with specific size range or type.

6. REFERENCES
[1] D. Applegate, W. Cook, and A. Rohe. Chained

lin-kernighan for large traveling salesman problems.
INFORMS Journal on Computing, 15(1):82–92, 2003.

[2] M. Bonyadi, Z. Michalewicz, and L. Barone. The
travelling thief problem: The first step in the transition
from theoretical problems to realistic problems. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 1037–1044, June 2013.

[3] M. R. Bonyadi, Z. Michalewicz, M. Roman Przybyŏek,
and A. Wierzbicki. Socially inspired algorithms for the
travelling thief problem. In Proceedings of the 2014
conference on Genetic and evolutionary computation,
pages 421–428. ACM, 2014.

[4] H. Faulkner, S. Polyakovskiy, T. Schultz, and
M. Wagner. Approximate approaches to the traveling
thief problem. In Proceedings of the 2015 on Genetic
and Evolutionary Computation Conference, pages
385–392. ACM, 2015.

[5] Y. Mei, X. Li, and X. Yao. Improving efficiency of
heuristics for the large scale traveling thief problem. In
Simulated Evolution and Learning, pages 631–643.
Springer, 2014.

[6] M. R. Oliveira, A. G. dos Santos, and
M. de Freitas Araujo. Uma heuŕıstica busca tabu para
o problema do mochileiro viajante. In Simpósio
Brasileiro de Pesquisa Operacional, SBPO ’15, 2015.

[7] S. Polyakovskiy, M. R. Bonyadi, M. Wagner,
Z. Michalewicz, and F. Neumann. A comprehensive
benchmark set and heuristics for the traveling thief
problem. In Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO ’14,
pages 477–484, New York, NY, USA, 2014. ACM.

