
A hardware accelerator implementation for
real-time collision detection

Fredy Augusto M. Alves1, Lucas Bragança da Silva1, Ricardo S. Ferreira3, Peter Jamieson2, José A. Miranda Nacif1
1Institute of Exact Sciences and Technology, Federal University of Viçosa, Campus UFV-Florestal, Brazil

2College of Engineering and Computing, Miami University, USA
3Departament of Informatics, UFV, Brazil

fredy.alves@ufv.br, lucas.braganca@ufv.br, ricardo@ufv.br, jamiespa@miamioh.edu, jnacif@ufv.br

Index Terms—Parallel Processor, Hardware Accelerator, Com-
puter Architecture, Collision Detection

I. ABSTRACT

Collision detection algorithms are used to detect when
virtual objects collide and the results of these collisions.
This type of algorithm is used by many research areas such
as simulation. automatic path finding, tolerance checking,
among others. This type of algorithm is processed in real-
time. Intel created the HARP Platform which uses a PCI
with 8GB/s bandwidth, this decreased the memory latency
allowing real-time processing of fine grain applications
such as collision detection algorithms. In this paper we
propose a heterogeneous system in order to use the FPGA
on the HARP as an accelerator for collision detection
algorithms. Our results show a speedup of 14.5% in
execution time.

II. INTRODUCTION

With the recent acquisition of Altera by Intel, the tendency
is that FPGAs will be included in CPUs as accelerators for
a wide range of applications. Collision detection algorithms
are used to detect when virtual objects collide and the results
of these collisions. This type of algorithm is used by many
research areas such as simulation. automatic path finding,
tolerance checking, among others. Applications can be found
in games, factory simulators, medical procedures training
applications, virtual reality, etc [1].

Collision detection in games and simulators are usually
implemented in Engines in the form of APIs which can be
used out-of-the-box. Collision detection in applications such
as games and simulators is done in real-time which means
that collisions are processed as soon as they happen. With the
increasing complexity of the applications that use this type
of algorithm in order to achieve a better resemblance with
reality, the number of collisions for each simulation step has
been increasing so finding ways to improve its the efficiency
is crucial.

In a single simulation step we have access to a set of
collision data. One of the most important advantage of FPGAs
over CPUs is its capacity for parallel processing which is
ideal for collision detection algorithms. Before the acquisition

of Altera by Intel, the use of FPGAs as accelerators for this
type of algorithm was highly affected by memory latency but
this changed with the new platform HARP (Heterogeneous
Accelerator Research Platform) by Intel which consists of
a Xeon Processor connected to an Altera Stratix V FPGA
by a PCI of 8GB/s bandwidth which reduces drastically the
memory latency. The ODE [2] (Open Dynamics Environment)
is an open-source Engine used by a wide variety of games and
simulators.

HARP uses the AAL (Accelerator Abstraction Layer) fra-
mework to develop applications for it, it uses the service abs-
traction for implementing applications for accelerators which
allows the user to implement a method for accelerating an
application which can be called as any other function in a
C++ application such as ODE.

In this paper we developed a novel hardware accelerator for
spheres collision detection as a proof of concept for optimizing
this type of algorithm on FPGAs. It uses a many-processing
units approach to process collisions in parallel with a producer-
consumer approach in order to improve communication effici-
ency, it also uses pipeline methods to improve the throughput.
The algorithm uses floating point arithmetic. We tested the
design on the HARP platform and collected results in real-
time for many ODE simulation benchmarks. We managed to
get an improvement of up to 14.5%.

This paper is outlined as follows. In section III we briefly
explain the background of the collision detection algorithm
and its implementation on the HARP platform. In section IV,
we explain how our results were fetched. In section V, we
put our work into perspective. In section VI we present and
discuss our results. Then, in section VII we conclude our work
and explain the future works for it.

III. BACKGROUND

A. Collision detection algorithm

The ODE offers a collision detection engine, it also provides
an interface for reimplementing the methods on it. This engine
receives information about the shape and position of each
body in a space. At each simulation step, the collision engine
is responsible for identifying which bodies are colliding and
returning contact points which are structures responsible for
holding information about the collision.



B. Contact points

Contact points are structs returned by the collision detection
engine, they are composed by three attributes:

• Pos: The position of the contact point in a space.
• Normal: The resultant vector that is perpendicular to the

collision contact point.
• Depth: The depth of penetration of the bodies in each

other.
• G1 and G2: The bodies colliding for the contact point.

C. Sphere Collision detection algorithm

In our case of study, we reimplemented the method for
collision detection between two spheres, the pseudocode for
this algorithm is on Algorithm 1 with its inner methods. The
inputs are the position of two spheres in a space (p1 and p2)
and their respective radius (r1 and r2), all the data is in 32-bit
ieee 754 floating point format. The output is a contact point
for the collision.

The algorithm begins by calculating the depth for the
collision and storing it on the variable d. Based on d, the
algorithm has three possible execution flows. Flow 1 is when
the collision doesn‘t happen, we call this a fake collision, Flow
2 is when the bodies barely touch each other, this is a grazing
collision, Flow 3 is when the bodies collide with each other
and the collision has a depth, a real collision. Flow 2 almost
never happens so we focus our studies on Flow 1 and 3.

By studying the data dependencies on the algorithm, we
were able to identify which calculations could be executed in
parallel. We divided the calculations in stages which happens
is sequence in a parallel processor such as an FPGA, the
stages are listed on Algorithm 2. In this project we developed
a Verilog RTL Design to execute those stages.

As we are dealing with bodies in a 3D Space, p1,
p2,cNormal, cDepth,cPos are all vectors of size 3 to hold the
x, y and z coordinates. This means that each operation on
Algorithm 1 which uses any of these vectors is actually 3
operations.

D. The System architecture

The system architecture overview can be seen on Figure 1,
on the FPGA side, in addition to the Accelerator Function
Unit (AFU) for the collision detection algorithm on the FPGA,
the system also uses another component provided by Intel,
the System Protocol Layer 2 (SPL2) which is responsible
for memory address translation since the FPGA uses virtual
addressing, the shared memory can go up to 2GB.

The shared memory is divided in sections, the device status
memory (DSM) is a 4kb pinned memory region which holds
the status of the device. The control memory is a reserved
memory space for handshake signals between the CPU and the
FPGA, it is used for start and reset signals. The Src Buffer is
used by the CPU to send data to the AFU and the Dst Buffer
is used by the FPGA to send results to the SW application.
The VAFU2_CNTXT holds the pointers to the buffers.

The CPU side is composed by the ODE simulations and the
AAL application used to communicate with the AFU.

Algorithm 1 Spheres collision detection.
d← DCALCPOINTSDISTANCE3(p1,p2)
Flow 1: Fake Collision
if d > (r1 + r2) then return 0
end if
Flow 2: Grazing Collision
if d ≤ 0 then

cPos← p1
cNormal← (1, 0, 0)
cDepth← r1 + r2
Flow 3: Real Collision

else
d1← DRECIP(d)
cNormal← (p1− p2) ∗ d1
k ← 0.5 ∗ (r2− r1− d)
cPos← p1 + cNormal ∗ k
cDepth← r1 + r2− d

end if
function DCALCPOINTSDISTANCE3(p1,p2)

tmp← DSUBTRACTVECTORS3(p1,p2)
res← DCALCVECTORLENGTH3(tmp)
return res

end function
function DSUBTRACTVECTORS3(p1,p2)

res← p1− p2
end function
function DCALCVECTORLENGTH3(tmp)

res← sqrt(tmp[0]∗tmp[0]+tmp[1]∗tmp[1]+tmp[2]∗
tmp[2])
end function

Algorithm 2 Paralell Spheres collision detection.
Stage 1 :
d← DCALCPOINTSDISTANCE3(p1,p2)
rsum← r1 + r2
psub← p1− p2
rsub← r2− r1
Stage 2 :
d1← DRECIP(d)
d > rsum
r2− r1− d
r1 + r2− d
Stage 3 :
cNormal← (psub) ∗ d1
k ← 0.5 ∗ (rsub− d)
Stage 4 :
cnk ← cNormal ∗ k
Stage 5 :
cPos← p1 + cnk

E. The Sphere Collision Detection AFU

The AFU is divided into two main components as seen
on the datapath on Figure 2, the Processing Units Controller
(PUC) and the Sphere Collision Processing Units (SCPUs),



Figura 1. System architecture overview.

The handshake signals control protocol is implemented on the
PUC, it also implements a collector responsible for fetching
collision data from the Src Buffer and a Dispatcher responsible
for writing the collisions processing results to the Dst Buffer.
Besides the algorithm parallelism based on data dependence
described on Section III-A, in our architecture we also use
a many Processing Units approach, each SCPU process one
collision in parallel to the other SCPUs. So, if we have
N SCPUs, the collision execution time T for one collision
processing becomes T/N. The PUC also controls the start and
reset signals for the SCPUs, it receives from the CPU AAL
application the number of collisions to be processed Ncol, it
then execute each SCPU Ncol/N times.

Figura 2. the AFU datapath.

IV. METHODOLOGY

A. Collision detection execution time on AFU

The AAL framework is service-oriented so it works with
the concept of transactions. A transaction must be initiated,

processed and stopped. The steps for executing a transaction
from the AAL to the AFU is presented on Figure 3 and works
as follows:

1) The AAL application gets pointers to the src buffer
(pSource), destination buffer (pDest) and AFU context
(pVAFU2_cntxt).

2) The application sends the collision Data to be processed
to the Source Buffer and starts the SPL.

3) The application sends the start signal and how many
collisions (nCol) should be processed to the AFU through
the control memory.

4) The AFU writes its AFU ID to the DSM which is used
to signal to the CPU that it is running.

5) After the AFU finishes processing the collisions, it signals
to the CPU that it is done.

6) The CPU uses pDest to retrieve the collision processing
results from the Destination Buffer.

7) The application ends the transaction by freeing the works-
pace.

The application re-execute the collision processing on the
AFU X times and compute an average of all the execution
times, this process is done in order to minimize the variations
on the method for fetching execution time. As the path for
executing a type of collision is always the same, it is expected
that the execution time for a certain amount of collisions is
always similar.

Figura 3. Transaction steps.

B. Collision detection execution time on ODE

For the ODE, a set of parameterizable benchmarks was
developed. The benchmark creates a simulation environment
with spheres organized in the form of a diamond, it receives
the maximum height hMax for the diamond from its center
as an input parameter in number of spheres. Figure 4 shows
examples of three benchmarks and their respective hMax. It
is also possible to increase the distance dSph between the
spheres. After the spheres are created, a force is applied in



each one pointing to the center of the diamond so they can
collide.

Figura 4. Benchmarks.

In order to get the execution time, the user must specify
how many collisions and their respective type tCol (fake, real
or grazing) should be taken into account. Figure 5 shows the
execution flow for getting the ODE spheres collision execution
times. First the benchmark parameters are set, the simulation
starts, when an execution of the specified type happens, it is
executed 10 times and the execution time average is added
to the total execution time, if the number of collisions nCol
is equal to the maximum number of collisions nColMax, the
simulation stops and the benchmark returns the total execution
time. The benchmarks were created in order to take into
account any optimization made by the processor in a real time
application.

V. RELATED WORKS

On [3] an algorithm to solve linear programs is used in
order to improve the speed of collision detection algorithms,
this paper uses preloaded data with memory initialization files
in an FPGA kit to generate its results. On [4], a collision
detection design for FPGAs using fixed-point arithmetics and
bounded error is proposed, its focus is on saving space in
order to improve area overhead, its results are given in terms

Figura 5. ODE execution flow.

of speedup but it also uses preloaded data. Works such as [5]
[6] relies on GPU-CPU based systems to improve collision
detection.

The main differentials for our work is that we propose a
real-time collision detection design for real-time processing on
a CPU-FPGA heterogeneous system without preloaded data,
our results are executed in a real environment and are given
in terms of execution time speedup.

VI. RESULTS AND DISCUSSION

Our experiments were conducted by executing sets of real
collisions on both ODE and the AFU. For the ODE, the tests
were made using a benchmark of hMax equal to 3 and dSph
equal to 0. We started with a set of 10 collisions and then
kept increasing it by 10 until we reached 1000 collisions. We
presented the results in terms of collisions processing time in
a graph comparing ODE to the AFU times. For the AFU we
used 10 SCPUs.

Figure 6 shows the graph for the sets of real collisions, the
increasing in execution time is linear as expected since the
path to execute a real collision is always the same. Above 250
collisions, the AFU is always better than the ODE, the reason
why before this point the ODE is better is because the AFU
has a configuration time before and after each transaction, this
configuration time is on average 2000 milliseconds so the AFU
must reach a minimum of collisions in order to compensate
this. With the number of collisions that we collected, we can
reach up to 14.5% speedup on the AFU for real collisions.

We then implemented another test where we start with a
set of 1000 collisions and increase it by 1000 until we reach
90000 collisions, the results can be seen in Figure 7. For the
HARP tests, the average execution time per collision was 86ns
and for the ODE it was 102ns.

VII. CONCLUSION AND FUTURE WORK

In this work we presented a hardware accelerator for a
collision detection algorithm. We implemented a case of
study with Sphere Collision Detection reaching a speedup of
up to 14.5% with FPGA proven designs running in a real
environment. The results show that our design is a great option
for decreasing execution times for this type of algorithm in
this new FPGA accelerators reality. As for future works, we



Figura 6. Graph for real collisions for 1000 set.

Figura 7. Graph for real collisions for 100000 set.

intend to expand the AFU library to another type of collisions
detection algorithms in order to produce a new Engine.

ACKNOWLEDGMENTS

We would like to thank UFV for providing us the necessary
materials and support, we also would like to acknowledge
the students Connor Blandford and Oakley Katterheinrich
for participating on the development of the SCPUs during a
summer internship on the Miami University.

REFERÊNCIAS

[1] H. Wei and W. W. Gen, “A comprehensive fpga implementation of
collision detection,” in IET International Communication Conference on
Wireless Mobile and Computing (CCWMC 2011), Nov 2011, pp. 341–
346.

[2] R. Smith. Open dynamics engine. [Online]. Available:
http://www.ode.org/

[3] C. H. Wu, S. O. Memik, and S. Mehrotra, “Fpga implementation of
the interior-point algorithm with applications to collision detection,” in
2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines, April 2009, pp. 295–298.

[4] A. Raabe, S. Hochgurtel, J. Anlauf, and G. Zachmann, “Space-efficient
fpga-accelerated collision detection for virtual prototyping,” in Procee-
dings of the Design Automation Test in Europe Conference, vol. 2, March
2006, pp. 6 pp.–.

[5] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dill-
mann, “Unified gpu voxel collision detection for mobile manipulation
planning,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 4154–4160.

[6] A. Hermann, F. Mauch, K. Fischnaller, S. Klemm, A. Roennau, and
R. Dillmann, “Anticipate your surroundings: Predictive collision detection
between dynamic obstacles and planned robot trajectories on the gpu,” in
2015 European Conference on Mobile Robots (ECMR), Sept 2015, pp.
1–8.


