
CGRA HARP: Virtualization of a Reconfigurable
Architecture on the Intel HARP Platform

Lucas Bragança da Silva, Fredy Alves
and José A. Nacif

Department of Informatics
Federal University of Viçosa

Campus Florestal
Florestal-MG 35690-000, Brazil

Email:{lucas.braganca, fredy.alves, jnacif}@ufv.br

Fernando Passe, Vanessa C. R. Vasconcelos
and Ricardo Ferreira

Department of Informatics
Federal University of Viçosa

Campus Viçosa
Viçosa-MG 36570-900, Brazil

Email:{ricardo, fernando.passe, vanessa.vasconcelos}@ufv.br

Abstract—Researches in heterogeneous computing have shown
that the usage of more than one computational node in the
same system increases the performance and decreases the energy
consumption. There are some types of architectures that have
many advantages, both in performance increasing and in energy
efficiency, such as architectures that possess a FPGA as an
accelerating unit. An example of this type of architecture is the
HARP, recently launched by Intel. Currently, in order to use the
HARP’s FPGA, the developer must implement an accelerating
functional unit (AFU) and perform the synthesis of this unity
in the FPGA, but this synthesis may demand a considerable
time, making the architecure unfeasible for a real time system
that requires the FPGA reconfiguration. Thus, in this work it
is presented an abstract layer for the HARP’s FPGA, which
allows the FPGA reconfiguration with no need to perform a new
synthesis, making this architecture feasible for a real time system.

I. INDRODUCTION

Nowadays, with the rise in the quantity of produced data,
comes the problem of processing these information in the
least time possible [1]. Researches in technologies capable
of increasing the processing power of modern computers are
turning to the usage of parallel processing.

The great challenge for computer scientists is to develop
architectures that allow the processing of parallel data in
an efficient way. An example of technology that explores
this kind of processing are the GPUs (Graphics Processing
Units), which are capable of performinf operations over a large
quantity of data [2]. When regarding problems that revolve
around parallel processing at a data level, GPUs are a great
alternative. These kind of problems can be modelled and
processed directly at the GPU, thus optimizing the processing
time. There are other classes of problems which can be solved
by using parallelism, but not in a data level. When this is
the case, an interesting strategy is the usage of reconfigurable
hardware as FPGAs (Field Programmable Gate Arrays). The
FPGAs can be reconfigured in order to behave as any kind of
digital circuit. A new technology presented by Intel is called
HARP (Heterogeneous Architecture Research Platform) and
has the goal to ease the researches on heterogeneous com-
puting, by providing an architecture with an API (Application
Programming Interface) for its usage. This architecture has

a central processing unit (CPU) and a FPGA in the same
system, which makes it possible to program new hardwares
in the FPGA with the goal of aiding the data processing, thus
obtaining a reconfigurable hardware acceleration.

In order to obtain a proper operation of the system, an
application must be divided in two parts: one that will be
programmed to the CPU by using the Intel API in C++, a
high level object oriented language, and another that should
be programmed for the FPGA in a hardware description
language such as Verilog. This configuration shows to be
functional when a solution is implemented in order to use
both architectures in an efficient way, being that the C++
code is compiled for the CPU and the other part of the
system is implemented in Verilog and synthesized in the
FPGA. However, the process of modeling and programming
the system for the FPGA is difficult and unintuitive for non
experienced programmers. Moreover, the process of synthesis-
ing and configuring the FPGA may take a considerable time,
depending on the application size, what makes it unfeasable to
change the context for real time systems. One way to avoid this
problem is the development of an abstraction layer. By using
this layer, it will be possible reconfigure the FPGA from the
HARP platform in execution time. Additionally, it will provide
a way of programming the FPGA without the requisite to use
a hardware description language, making it easier and more
intuitive, and discarding the need of synthesising it again.

Thus, this work has the objective to implement an ab-
straction layer for the HARP platform, in order to provide
a simple and efficient programming interface while keeping
all the processing power of this architecture, without the need
for a programmer who is familiarized on hardware description
languages and allowing system reconfigurations in real time,
which are not possible in the current context.

This paper is divided as following: the types of heteroge-
neous computing and the description of the problems faced
when using HARP were approached in the introduction; in the
second section a general vision in heterogeneous computing
is presented, with emphasis on its two main types and a
description of the Intel platform; in the third section there is a
discussion on dataflow graphs and how those can be used for



obtaining parallelism in coarse-grained reconfigurable archi-
tectures (CGRA); in the fourth section there is a description
of the CGRA implemented to be virtualized in the HARP’s
FPGA; in the fifth section the results and future works are
discussed; lastly, the sixth section presents this work’s final
considerations.

II. HETEROGENEOUS COMPUTING

Heterogeneous computing can be defined as any system that
uses different types of architectures in a single computational
node. The current main used architectures in heterogeneous
computing are the systems with a central processing unit
(CPU) together with a graphics processing unit (GPU) or a
more common reprogrammable architecture such as FPGA. In
this section we present the two types of computational nodes,
showing an architecture developed by Intel as an example.

A. CPU and GPU Architecture

This is the most frequently used architecture, due to most
of the personal computers and workstations containing a GPU,
whereas GPUs are accelerator devices that act together with
the CPU and whose only function is graphics processing.
However, in 2001 the GPUs started to use 32 bits floating
point values when dealing with pixels, what made it possible
for programmers to perform computation on graphics cards,
thus obtaining a better performance in their applications, as in
[3].

In 2007, Nvidia launched the first graphics card as an
accelerator, boosting the execution of applications of deep
learning, analysis and engineering [2]. The computing that
gets accelerated by graphics cards performs the most intense
computations of a program in the thousands of present cores in
a GPU. Thus, a part of the code is executed by the CPU, and
another part is executed by the GPU, causing the execution
time for these applications to get shorter.

Figure 1 shows a system with CPU and GPU, exemplifying
how GPUs accelerate workloads. Yet, parallelizable chunks
of a code represent solely 5% of the whole application code,
which still leaves most of the work for the CPU, [2]. This is
due to the way the GPU executes the instructions in each of
its cores. Because of its usage of an architecture model where
the same instruction is executed by all the cores concurrently
(SIMD), it loses performance to algorithms that cannot be
implemented with this kind of parallelism.

B. CPU and FPGA Architecture

This architecture for heterogeneous computing is more
recent. In this one, a system is composed by a CPU and a
FPGA, connected via high speed bus. Although FPGAs have
been invented a long time ago, with the new technological
advancements in the microelectronics field, these devices have
been gaining noticeability recently. An interesting characteris-
tic of a FPGA is its reconfigurable capacity, making it possible
to implement various types of circuits [4]. Other important
properties from the FPGAs are their energy efficiency and
the excelent cost/performance relation in comparison with a

Fig. 1. System with CPU and GPU (source: [2])

regular hardware, they can also offer high density of parallel
computing, both in spatial terms as well as in temporal
parallelism terms acquired by means of pipeline [5].

There are various CPU/FPGA heterogeneous platforms such
as: Alpha data [6], which can be easily adapted in any work
station by using the PCI slot; Microsoft Catapult [7] and Intel
HARP platform [8], which will be discussed in this paper.

C. HARP: Heterogeneous Architecture Research Platform

The purchase of Altera by Intel shows that the researches
in reconfigurable architectures are promising [9]. The recently
launched HARP platform is the result of the combination from
two of the most important technology companies from the
current scenario.

HARP is a server for datacenters that possess a CPU Intel
Xeon E5-2680v2@2.80GHz and a FPGA from Altera Stratix
V@200MHz in its system, they are connected via a QPI bus of
8 GT/s, developed by Intel itself. In order to optimize the data
transfer speed between the CPU and the FPGA, Intel has used
two sockets in HARP’s motherboard, being that one is used
by the processor Xeon and the other is used by the Stratix V.
The communication between these two entities happens via a
64kb cache, which produces a better data transfer performance
[10]. Figure 2 shows the HARP architecture and the QPI
communication bus.

Currently, the development process for a HARP platform is
slow and difficult. The developer must map its solution to the
FPGA by developing an acceleration functional unit (AFU)
and suiting this functional unit to a communication structure
that is already implemented by Intel. A host application must
also be implemented by using the HARP’s API, which is
written in the C++ programming language, this application
is responsible for allocating and using the AFU. Figure 3
illustrates the execution flow from an application in the HARP
Intel platform.



Fig. 2. HARP Intel Communication Scheme (Source: [10])

Fig. 3. HARP development flow (Source: [11])

This process may demand much of the project’s time, since
hardware programming is not a trivial task. Another important
observation regarding this development environment and the
platform’s usage is that once the AFU is implemented it must
be compiled and synthethized in the HARP’s FPGA, this
process may take time depending on the complexity of the
solution. Once the accelerator (AFU) is synthethized in the
FPGA, it can be used in computations in which it was designed
to perform. However, if it is necessary to perform a new type
of computing, a new AFU will have to be implemented and
synthethized, thus causing the context change to be unfeasible,
which makes the system limited on its usage.

A feasible way to avoid the HARP’s FPGA reconfiguration
problem is to implement an abstraction layer for the FPGA,
where once this layer is implemented and synthethized, the
developer should worry solely on modeling the solution for
this new architecture, spending less time on development and
allowing configuration change without the need to execute a
new synthesis, thus being able to perform reconfigurations in
execution time. In this work the abstraction implemented in
HARP’s FPGA is a coarse-grained reconfigurable architecture
(CGRA), in other words, it allows reconfiguration to a word
level.

III. CGRA

CGRA is a coarsed-grained reconfigurable architecture that
possesses logical components, which are connected by an
interconnection network and may be configured [4].

CGRA was designed with the goal to reduce the config-
uration time and complexity when compared to a FPGA. In
order to reach this goal, the logical and arithmetic operations
of a CGRA are executed by processing units named UPs,
which perform more complex operations than the logical and
arithmetic units of an FPGA. This is due to the FPGAs
operations being performed in a bit level while a CGRA
performs operations in a word level [4].

The basic composition of a CGRA is given by the following
elements:

• Processing Unit (UP): Element that performs the logical
and arithmetic operations;

• Interconnection Network: Unit responsible for connecting
the UPs outputs to each of the UPs own inputs;

• Configuration Memory: A memory that works as a pro-
gram memory. In this element the operations which the
UPs should perform and the configurations of the CGRA
interconnection network are stored.

In a CGRA, the processing units (UPs) can be classified
in two ways: Heterogeneous or homogeneous. The heteroge-
neous UPs can perform different operations between them,
in other words, each UP has a different instruction set; on
the other hand, the homogeneous UPs perform the same set
of instructions. The operations that the UPs are capable of
performing may be logical, arithmetic or input and output
data. Another important characteristic in a CGRA is the type of
interconnection network it adopts. There are two main types of
networks in CGRAs, the multistage network and the crossbar
network. The multistage networks are smaller in terms of
logical elements in comparison to a crossbar network, but
its mapping is more complex and sometimes it may not be
possible. As of the crossbar networks allow any mapping from
the inputs to any outputs, what facilitates the mapping process,
yet they consume a high number of logical elements.

Thus, a basic CGRA allows a form of data computing
similar to a dataflow machine. Dataflow machines are a type of
programmable computer in which the hardware is optimized
for fine-grained parallel computing, where fine-grained means
the processes are executed in parallel and have the same
size as a conventional machine instruction code. This type of
architecture allows the execution of dataflow graphs. Due to its
properties, this machine was widely studied by Von Neumann
in his researches on neural networks, for it is possible to model
a neural network by using dataflow graphs [12].

IV. DATAFLOW GRAPHS

Dataflow graphs (GFD) are structures that allow the mod-
eling of any conventional algorithm in the form of a graph.
In this structure the nodes of the graph are the operations that
are going to be executed and the edges are the data. A GFD
may be used to map an algorithm in CGRA, if we take the



nodes of the graph as an UP and its edges as the input data
and their outputs. In this way, we can obtain what is named as
a temporal parallelism, in which each level of the graph can
be seen as a pipeline stage. Figure 4 shows an example of a
GFD for the second degree equation ax2+ bx+ c, which may
be mapped for a CGRA. In this example, we have a latency
in the calculation of the 3 input equation, but after the third
input, for each new input data, the result of a new equation is
calculated.

Fig. 4. GFD for the equation ax2 + bx+ c (Source: [11])

A. CGRA virtualized in HARP

The virtualization of a CGRA in the HARP’s FPGA allows
the configuration of the system without the need of performing
a new synthesis, thus the developers may map algorithms in
the form of a GFD and execute them in HARP in a fast
and simple way, taking advantage of the natural parallelism
of a GFD. In this work a 16 bits word CGRA and 8 UPs
connected by a interconnection network of the crossbar type
was implemented. Besides its basic elements, this CGRA has
an array of constants, which allows their uses as inputs for the
UPs, easing the mapping of mathematic equations such as the
example of Figure 4.

Figura 5 illustrates the CGRA datapath implemented for the
HARP’s FPGA.

This CGRA is classified as heterogeneous solely because
of two different UPs performing the data loading and writing,
respectively, while the rest of the UPs can perform basic arith-
metic and logical operations. Each UP possess 3 configuration
bits and 1 enabling bit, also, only the UPs for data loading and
writing have 2 more bits, what makes a total of 34 bits for
all UPs. The crossbar network from the UPs is 8x16, in other
words, it is capable of connecting the eight UPs outputs to any
of the sixteen UPs inputs, spending a total of 48 configuration
bits. The crossbar network from the constants is also 8x16,
what makes it possible for mapping any constant to any of the
UPs inputs. Lastly, 16 bits are used for multiplexer control,
making a configuration word with a total of 146 bits.

Fig. 5. CGRA datapath (Source: The author himself)

V. RESULTS AND FUTURE WORK

As a result, it is obtained an architecture that makes it possi-
ble to execute GFD for mathematic calculations in the HARP
platform, without the need of performing a new synthesis,
being this the main focus of this work. Thus, there is no need
for results regarding the execution time.

Besides that, this architecture is capable of performing
calculations of various types of GFDs in a fast and simple
way, without the need for the developer to directly program
for the HARP’s FPGA.

In future works, we plan to expand the architecture making
it faster and more efficient. For that, we would need to: rise the
number of UPs in order to obtain better performance through
parallelism; make a homogeneous CGRA, which would allow
any of the UPs to perform all the operations, including data
input and output; and rise the number of operations from the
UPs, in order to make floating point operations possible.

VI. CONCLUSION

This work presented the HARP platform and the main
problem found by its developers.

The reconfiguration time of reprogrammable devices such
as the FPGA is an obstacle that needs alternatives in the
current context. The quantity of generated data tends to rise
even more in the upcoming years, and extracting information
from these data with conventional architectures might not
be possible. Due to that, researches of new architectures are
of utmost importance in the current scenario. CGRA HARP
constitutes an architecture that solves the configuration time
for the FPGA, increasing the efficiency of applications that
require to change its context quickly.

REFERENCES

[1] IBM. (2013) Curso big data analytics. [Online]. Available:
https://www.ibm.com/developerworks/community/blogs/bigdata/entry/curso_-
big_data_analytics_na_fgv_management_rio_de_janeiro



[2] NVidia. (2016) Computação acelerada. [Online]. Available:
http://www.nvidia.com.br/object/what-is-gpu-computing-br.html

[3] A. Moravánszky, “Dense Matrix Algebra on the GPU.” [Online].
Available: http://www.shaderx2.com/shaderx.PDF

[4] W. D. M. M. FILHO, “Virtualização e execução de algoritmos em fpga:
Um algoritmo de modulo scheduling para arranjos reconfiguravéis de
grão grosso,” Master’s thesis, Universidade Federal de Viçosa, Viçosa-
MG 36570-900, Brasil, 2014.

[5] R. Ferreira and J. A. M. Nacif, “Computação heterogênea com gpus e
fpgas,” Livro dos Minicursos do WSCAD 2016.

[6] A. DATA. (2016) Alpha data datasheet:adm-pcie-7v3. [Online].
Available: http://www.alpha-data.com/pdfs/adm-pcie-7v3.pdf

[7] A. C. Andrew Putnam, “A reconfigurable fabric for accelerating
large-scale datacenter services,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture
(ISCA). IEEE Press, June 2014, pp. 13–24. [Online].
Available: https://www.microsoft.com/en-us/research/publication/a-
reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/

[8] N. Carter. (2016) Intel-altera heterogeneous architec-
ture research platform (harp) program. [Online]. Avail-
able: https://www.sigarch.org/2015/01/17/call-for-proposals-intel-altera-
heterogeneous-architecture-research-platform-program/

[9] ComputerWorld. (2015) Intel anuncia a conclusão da
compra da altera por us$ 16,7 bilhões. [Online]. Avail-
able: http://computerworld.com.br/intel-anuncia-conclusao-da-compra-
da-altera-por-us-167-bilhoes

[10] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quan-
titative analysis on microarchitectures of modern cpu-fpga platforms,” in
Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016, p. 109.

[11] R. F. Fernando Passe, Vanessa C. R. Vasconcelos, L. B. Silva, and J. A.
Miranda, “Virtual reconfigurable functional units on shared-memory
processor-fpga systems,” 2016.

[12] A. H. Veen, “Dataflow machine architecture,” ACM Comput. Surv.,
vol. 18, no. 4, pp. 365–396, Dec. 1986. [Online]. Available:
http://doi.acm.org/10.1145/27633.28055


