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Abstract—The economic load dispatch problem has been
formulated as the minimization of total fuel cost needed to
generate electricity in power plants. Due to the environmental
issues that arise from the emissions of polluting gases produced
by fossil-fueled electric power plants, it becomes the environ-
mental/economic dispatch (EED) multi-objective optimization
problem. EED problems have been most commonly solved using
deterministic models (without considering uncertainties). In this
context, a robust model to cope with uncertainties is necessary,
because the deterministic model is not able to reflect some real
condition in practical applications, since fuel cost and emission
coefficients may be subjected to inaccuracies, for instance. In
this paper, both deterministic and robust EED problem models
are first formulated, and the Robust Evolutionary Optimization
Algorithm - REOA is proposed. For the robust model, the
worst case scenario is estimated, to find reliable solutions that
still feasible and have a good performance under the action of
parametric uncertainties. Comparative studies are carried out to
examine the effectiveness of the proposed approach. Simulation
results are presented for the standard IEEE 30-bus system. The
obtained results are satisfactory compared to the best solutions
found in the literature.

Index Terms—Evolutionary Computation, Environmen-
tal/Economic Dispatch Problem, Robust Optimization, Multi-
Objective Optimization

I. INTRODUCTION

Nowadays there are serious environmental problems that
urge for solutions. Reference [6] describes that environmental
issues have had a greater impact on the economy due to the
deterioration of the ecological environment. In terms of power
generation, in general, a standard gas turbine plant with a
thermal efficiency of 35% requires about 220 kg of natural
gas to generate 1 MWh of electricity. The combustion of
the fuel emits about 600 kg of carbon dioxide. For a plant
with an average power capacity of 100 MW, the annual CO2

reduction would reach 5200 tonnes with a 1% reduction in

fuel consumption, which is possible by adopting appropriate
measures of operational optimization and maintenance. In the
world, for example, if all gas turbines have a generation
capacity of 4.5 × 1012 kWh/year, the amount of CO2 that
would cease to be emitted would exceed 25 million tons
per year. Therefore, the study of operational optimization is
necessary for the generation of energy in plants that emit
polluting gases.

A classical environmental/economic dispatch (EED) prob-
lem is to operate electric power systems so as to minimize
the total fuel cost and, at the same time, reduce the emissions
produced by fossil-fueled electric power plants. It is a multi-
objective optimization problem because pollution conflicts
with the minimum cost of generation [7]. The EED problem
has been formulated to determine the allocation of electric
power for different generating units in order to minimize the
total generation cost subject to technological and physical
constraints. In recent years, with the increasing concern on
environment protection, the EED problem has drawn much
attention for reducing pollution [1]. It turns out to be a
more desired power dispatch scheme when compared with
the previous pure economic dispatch approaches. Various
techniques have been proposed to solve this multi-objective
problem whereby most researchers have concentrated on the
deterministic problem without uncertainties. Therefore, it is
necessary to construct a robust model, in which solutions
remains feasible and have a good performance under consid-
eration of parametric uncertainty.

After the introduction of environmental consideration in the
economic dispatch problem, researchers started considering
approaches that bear in mind uncertainties that are inherent
in real systems. Reference [1] considers uncertainties as noise
in the objective functions. Hence, a term in the objective



functions is added taking into account the mean and standard
deviation of the output of each power generator unit of the
plant. Reference [8] uses the Particle Swarm Optimization
(PSO) algorithm and also considers uncertainties as noise in
the objective functions. The objective functions were obtained
through Taylor’s series expansion around the mean, consider-
ing coefficients of variation of the random variables of power
generator units. In this paper, we propose an evolutionary
algorithm named Robust Evolutionary Optimization Algorithm
(REOA), that provides robust solutions for multi-objective
optimization problems considering parametric uncertainties.
For the EED problem, REOA provides a different approach
from those found in the literature, using parametric uncertainty
and not a noise in the optimization functions.

In this paper, both the deterministic and robust models
are addressed. More precisely, parametric uncertainties are
considered in the robust model. The paper is organized as
follows. The multi-objective and robustness concepts used in
this paper are defined in Section 2. The EED problem is
defined in Section 3. Section 4 outlines the system parameters
considered in this study. Section 5 describes the REOA. The
simulation results of the deterministic and robust models are
given in Section 6. Based on these results, the main findings
and some conclusions are outlined in Section 7.

II. MULTI-OBJECTIVE OPTIMIZATION AND ROBUSTNESS

A multi-objective optimization problem can be formulated
as follows [14]:

min /max f(x) = {f1(x), f2(x), ..., fnf
(x)}

Subject to gi(x) ≤ 0 i = 1, ..., ng

hi(x) = 0 i = 1, ..., nh

x ∈ S

(1)

where f(x) represents the objective functions vector, gi(x)
and hi(x) the constraints functions, x = (x1, x2, ..., xnv

)T

the vector of decision variables and, S ⊆ Rnv the feasible set.
S is given by:

S = {x ∈ Rnv |∀i ∈ {1, ..., ng} ∧ ∀j ∈ {1, ..., nh},
gi(x) ≤ 0 ∧ hj(x) = 0}

(2)

The objective functions are, for the most part, conflicting
with each other [10]. In general, there is no single solution ca-
pable of optimizing all the objective functions simultaneously,
but rather a set of solutions or Pareto set. The construction
of a Pareto set is associated with the notion of Dominance.
Considering minimization, a vector u = (u1, ..., unf

) is
considered better than v = (v1, ..., vnf

) if and only if
∀i ∈ {1, ..., nf}, ui ≤ vi ∧∃i ∈ {1, ..., nf}|ui < vi. In words,
we say that u dominates v, or u ≺ v. According to [14], a
vector x∗ ∈ S belongs to the Pareto Set if there is not another
vector x ∈ S such that fi(x) ≤ fi(x∗)∀i ∈ [1, 2, ..., nf ]∧∃j ∈
[1, 2, ..., nf ] /fj(x) < fj(x

∗) for at least one index j.
Multi-objective optimization problems are also subject to

uncertainties, which are often difficult or impossible to avoid

in practice [5]. Reference [11] affirms that, in fact, uncertainty
is present in several situations, such as, for example, when data
is missing or corrupted, when the laws describing a phenomena
are not completely known, or when the environment affects the
system. According to [9], a robust solution can be defined as
a solution that has satisfactory performance under parametric
variations, not being sensitive to small variations of project or
environment variables.

Considering the previous discussions and adding the un-
certainty parameter p ∈ P ⊆ Rnp , the minimization robust
multi-objective problem can be written as:

min
x∈S

max
p∈P

f (x,p) = {f1(x,p), ..., fnf
(x,p)} (3)

with the feasible region given by:

S = {x ∈ X|g(x,p) ≤ 0 ∧ h(x,p) = 0,∀p ∈ P}. (4)

Solving (3) consists in finding the Pareto set of robust
minimizers X∗,

X∗ = {x∗ ∈ S|@x ∈ S,max
p∈P

f(x,p) ≺ max
p′∈P

f(x∗,p′} (5)

Thus, the concept of robustness used in this paper is to
discover solutions that remain efficient and feasible for all
specified levels of uncertainty, even when exposed to small
disturbances. Such solutions are called robust solutions.

III. ENVIRONMENTAL/ECONOMIC DISPATCH

The environmental/economic dispatch involves the simulta-
neous optimization of fuel cost and CO2 emission. Nonethe-
less, there are uncertainties in power system operations, the
typical formulation of planning and scheduling power gener-
ation activities remains deterministic. The uncertainties may
come from internal parameter changes as well as external
continuously varying factors such as load demands. The de-
terministic model and its robust version are formulated as
described below.

A. Objective Functions

a) Fuel Cost: The deterministic model for the classical
economic dispatch problem of finding the optimal combination
of power generation, which minimizes the total fuel cost while
satisfying the total required demand, can be mathematically
stated as follows according to [1]:

C =

n∑
i=1

(ai + bixi + cix
2
i ) $/hr, (6)

where:
• C: total fuel cost per hour ($/hr),
• ai, bi, ci: fuel cost coefficients of generator i,
• xi: power generated in power unit (p.u.) by generator i,

and,
• n: number of generators.



The robust model is obtained by adding uncertainties in
the decision variables. Thus, the expected fuel cost can be
expressed as follows:

C =

n∑
i=1

(ai + bi[xi + pi] + ci[xi + pi]
2) $/hr, (7)

where pi is the uncertainty relative to power generator i.
b) NOx Emission: The amount of pollutants emission,

which can be modeled using second order polynomial func-
tions [1]:

ENOx
=

n∑
i=1

(
αi + βixi + γix

2
i + ξi sin (δixi)

)
ton/hr,

(8)
where:
• ENOx : NOx emission in tons per hour (ton/hr),
• αi, βi, γi, ξi, δi: polluting emission coefficients of each

generator i,
Thus, the expected emission for the robust model can be

achieved by the form:

ENOx =
∑n

i=1

(
αi + βi[xi + pi] + γi[xi + pi]

2 + ξi sin (δi[xi + pi])
)

(9)

B. Constraints

The deterministic and robust optimization models are
bounded by the following constraints:

a) Power Balance Constraint: The total power generated
must supply the total load demand and the transmission losses.

n∑
i=1

XG −XD −XL = 0, (10)

where:
• XG: total power generated (p.u.),
• XD: total load demand (p.u.), and
• XL: transmission losses (p.u.).

b) Maximum and Minimum Limits of Power Generation:
The power xi generated by each generator is constrained be-
tween its minimum and maximum limits, for the deterministic
model by the form:

xiMin ≤ xi ≤ xiMax (11)

For the robust model, the following statement is used:

xiMin ≤ xi + pi ≤ xiMax (12)

The network losses are modeled using Kron’s loss formula
as follows:

XL =

n∑
i=1

n∑
j=1

(xi +pi)Bij(xj +pj)+

n∑
i=1

B0i(xi +pi)+B00,

(13)

where Bij , B0j and B00 are the loss coefficients (or B-
coefficients) listed below:

Bij =



0.02180 0.01070 −0.00036 −0.00110 0.00055 0.00330

0.01070 0.01704 −0.00010 −0.00179 0.00026 0.00280

−0.00040 −0.00010 0.02459 −0.01328 −0.01180 −0.00790

−0.00110 −0.00179 −0.01328 0.02650 0.00980 0.00450

0.00055 0.00026 −0.01180 0.00980 0.02160 −0.00010

0.00330 0.00280 −0.00790 0.00450 −0.00010 0.02978


(14)

B0i = 10−3 × [0.010731, 1.7704,−4.0645, 3.8453, 1.3832, 5.5503]

(15)

B00 = 0.0014 (16)

C. Uncertainties

Since REOA uses parametric uncertainty, the way used to
calculate the interval is determined by the following equation:

pi = 0.03(xiMax − xiMin). (17)

pi indicates that the uncertainty associated with generator i
will be in the interval [−pi, pi]. That is, each decision variable
can have up to 3% more or less disturbance of its original
value.

IV. SYSTEM PARAMETERS

Simulations were performed on the standard IEEE 30-bus
6-generator test system, shown in Fig. (1), using the Elitist
Nondominated Sorting Genetic Algorithm (NSGA-II) for the
deterministic model and REOA for the robust model.
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Fig. 1. IEEE 30-bus power test system.

The power system is interconnected by 41 transmission lines
and the total system demand for the 21 load buses is 2.834



power unit (p.u). The coefficients of fuel costs and emissions
used in simulations are given in Table (I) and Table (II),
respectively.

TABLE I
FUEL COST COEFFICIENTS AND GENERATOR CAPACITIES

Generator i xiMin xiMax ai bi ci
1 0.05 0.50 10 200 100
2 0.05 0.60 10 150 120
3 0.05 1.00 20 180 40
4 0.05 1.20 10 100 60
5 0.05 1.00 20 180 40
6 0.05 0.60 10 150 100

TABLE II
POLLUTANTS EMISSION COEFFICIENTS

Generator i αi βi γi ξi δi
1 4.091e-2 -5.554e-2 6.490e-2 2.0e-4 2.857
2 2.543e-2 -6.047e-2 5.638e-2 5.0e-4 3.333
3 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000
4 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2.000
5 4.258e-2 -5.094e-2 4.586e-2 1.0e-6 8.000
6 6.131e-2 -5.555e-2 5.151e-2 1.0e-5 6.667

V. ROBUST EVOLUTIONARY OPTIMIZATION ALGORITHM -
REOA

The proposed Robust Evolutionary Optimization Algorithm,
REOA, is based on the NSGA-2 algorithm, and uses worst case
estimation to solve multi-objective optimization problems with
uncertainties.

A. Nondominated Sorting Genetic Algorithm - NSGA II

NSGA-II [2] works basically as a common genetic algo-
rithm, but some steps are added, such as the nondominated
sorting and crowding distance for all the solutions. In the
nondominated sorting step, all solutions are divided in fronts,
according to the dominance of each solution. The solutions in
the first nondominated front will have their domination count
as zero, which means there is no solution that dominates any
solution in the front. The second nondominated front will have
solutions with the domination count as one, which means those
solutions are dominated only by solutions in the first front.
Solutions in the third front are only dominated by solutions in
the first two fronts, and this is repeated until all solutions are
sorted in fronts. For the crowding distance step, the objective
is to reduce the density of solutions in each front, which will
result in more variety of the population, since solutions that
are very close to each other one of will be eliminated. More
details about NSGA-II may be found in [2].

A flowchart of the REOA can be seen in Fig. (2). The first
step is to generate the initial population. The second step is
to calculate the fitness of each solution using the proposed
robust concept. The third step is to check if the stopping
criterion is achieved, if it is not, the algorithm will continue.
The fourth step, if the stopping criterion was not achieved, is to
apply the crossover operation. The fifth step is the mutation

operation. The sixth step is to calculate the fitness of each
solution as in the second step. The seventh step is to perform
the nondominated sorting. Finally, the eighth step is calculate
the crowding distance of the solutions in each front created.
Afterward, the algorithm go back to step three. If the stopping
criterion is achieved, the execution is stopped and the Pareto
frontier is returned.

Start Generate Initial
Population

Robustness

Mutation

Nondominated Sorting

Crowding Distance

Fitness

Satisfy Stop 
Criterion

EndYes

No

Crossover Fitness

Fig. 2. Flowchart of the REOA

B. Worst Case Estimation - WCE
REOA uses a minimax strategy, in which the worst case of

uncertainties is found by a process of internal maximization
of a minimization problem. The minimax strategy consists of
a procedure of high computational complexity, requiring a lot
of time to solve optimization problems. To make this strategy
viable, a worst case estimation technique proposed by [3] was
used. According to [3], if the function fi(x) under analysis
is monotonic in U(x) with respect to all decision variables,
or convex, the worst case of uncertainties around a nominal
solution x0 and the worst value of restriction will occur at one
of the vertices of the domain U(x0) for the uncertainty vector
P .

The evaluation of the 2nv vertices of each f(x) (black
circles in Fig. (3)) may be computationally infeasible for
problems of high dimension nv (number of decision variables).
Thus, rather than trying to find the worst case exhaustively, it is
estimated which is the vertex of the worst case of uncertainties.
According to [3], it is possible to estimate the worst-case
uncertainty vertex with cost 2nv + 1 evaluations, which is
much lower than the cost of 2nv evaluations.

Fig. 3. Example of convex function in the domain U(x0) [3].

This technique proposed by [3] consists of evaluating the
effect of interval limits of uncertainties on each dimension nv



of the problem for each objective function. The interval limit
that generates the worst result in a given dimension provides
useful information of the direction of the vertex of the worst
case of uncertainties in that dimension. According to [3] the
formulation to estimate the worst case fwci(x0, P ) is:

fwci(x0, P ) = max[(fi(x0, p
∗), fi(x0))] |

p∗ =


sign(fi(x0, p1)− fi(x0, p1))∆1

sign(fi(x0, p2)− fi(x0, p2))∆2

...
sign(fi(x0, pnp

)− fi(x0, pnp
))∆np

 ,
p∗ ∈ P, i = 1, 2, · · · , nf

(18)

where:

∆j = pj , if sign(fi(x0, pj)− fi(x0, pj)) > 0

∆j = pj , otherwise.

j = 1, 2, . . . , np.

(19)

The signum function sign(∆f) returns the signal of ∆f ,
and is responsible for determining for each fi in the worst
case uncertainty direction. The value of ∆j represents the
magnitude of the pitch toward the worst case of uncertainty
for the i-th dimension, and assumes one of the limits of the
perturbation, whether higher than pj , or lower than pj . After
2nv evaluations are made to determine the vector p∗, then
fi(x0, p

∗) is calculated to definitively estimate the worst case,
thus having 2nv + 1 evaluations and the method has 2nv + 2
evaluations, since (18) evaluates the original objective function
without disturbance. This formulation is restricted to the para-
metric uncertainty, which affects only the decision variables.
If the function fi(x) is neither convex nor monotonic in U(x),
there is no guarantee that the worst case of uncertainty is at
one of the vertices of U(x), according to [3].

This methodology of estimating the worst case of uncertain-
ties is done for each objective function of the problem. Then,
the point of the solution obtained in the objective space for
the worst case estimate of uncertainty factors is determined,
this can be visualized in Fig. (4). Figure (4) distinguishes
between the ideal point of real maximizing f∗wc(x0, P ) and
the ideal point of estimated maximizing f̃wc(x0, P ), generated
by estimating the worst case with uncertainties in (18).

VI. SIMULATION RESULTS AND ANALYSIS

For all simulations performed on the standard IEEE 30-
bus 6-generator test system, the following parameters were
used: population size 100, 0.9 crossover probability and 0.1
mutation probability. The REOA execution stops after 100,000
evaluations of each objective function. The program was
written in Java and ran in a 1.60 GHz Core i5-4200u processor
with 8 GB of RAM. We used the MOEA Framework, available
in www.moeaframework.org, which is a Java library for the
development of multi-objective evolutionary algorithms. All
results presented are the best Pareto frontiers found after 30
executions of the algorithm for each scenario. Reference [10]

Fig. 4. Worst case estimation for f(x0) in multi-objective problems [4].

says the true Pareto optimal set (Ptrue) is not explicitly known
for real problems. Thus, all Pareto terms used in this paper
refers to Pknown, in which is the final set of solutions returned
by the Multi-objective Optimization Evolutionary Algorithm
(MOEA) at termination of execution. More information may
be found in [10]. The method used to analyze the results is
based on papers found in the literature. For instance, [1] and
[8], in which are evaluated the minimum fuel cost and the
minimum emission solutions. It was also used a worst case
scenario approximation method by samples (WCSA) in [10]
to compare the robustness of the ROEA. WCSA consists in
generating a number of samples (we used 2nv + 1) from a
solution disturbing randomly with a value from the uncertainty
interval of the decision variables. Next, the worst solution in
each dimension of the objective space is used to estimate the
worst case scenario.

The experiments were performed in two models of the EED
problem, considering and not considering transmission losses
of energy. The first model has the term XL in (10) to compute
the transmission losses of energy.

For the deterministic model without transmission losses,
Table (III) and Table (IV) illustrate the minimum fuel cost
and the minimum emission found by this paper and compares
them with other papers found in the literature. As may be
seen, this paper presents better results for the minimum fuel
cost and close values considering the minimum emission best
result found.

For the robust model without transmission losses, the results
found are shown in Table (V) and Table (VI). The values of
[1] are not shown because the results are originally presented
through graphs. For the minimum fuel cost, REOA found
a lower value compared to [8] and the minimum emission
is close to the [8]. The Deterministic Pareto Frontier (DPF)
and the robust Pareto frontier (REOA) are illustrated in Fig.
(5). It can also be observed in Fig. (5) that all nondominated
solutions from REOA are dominated by those from its corre-
sponding deterministic model (DPF). Disturbed Deterministic
Pareto Frontier (DDPF) corresponds to the DPF in which
all solutions are disturbed using the WCE, which shows that
deterministic solutions are more sensitive to uncertainties than



robust solutions. As one can see in Fig. (5), WCSA generated
solutions closer to DPF than the REOA.

TABLE III
MINIMUM FUEL COST FOR THE DETERMINISTIC MODEL WITHOUT

TRANSMISSION LOSSES CONSIDERED

This paper PSO [8] NSGA-II [1]
Minimum fuel cost $/hr 598.454 605.735 600.155

Emission ton/hr 0.2032 0.2064 0.22188

TABLE IV
MINIMUM EMISSION FOR THE DETERMINISTIC MODEL WITHOUT

TRANSMISSION LOSSES CONSIDERED

This paper PSO [8] NSGA-II [1]
Minimum emission ton/hr 0.1883 0.1860 0.19420

Fuel cost $/hr 635.417 645.300 638.269

TABLE V
MINIMUM FUEL COST FOR THE ROBUST SOLUTION WITHOUT

TRANSMISSION LOSSES CONSIDERED

REOA PSO [8] NSGA-II [1]
Minimum fuel cost $/hr 601.325 614.571 -

Emission ton/hr 0.2059 0.2065 -

TABLE VI
MINIMUM EMISSION FOR THE ROBUST SOLUTION WITHOUT

TRANSMISSION LOSSES CONSIDERED

REOA PSO [8] NSGA-II [1]
Minimum emission ton/hr 0.1884 0.1866 -

Fuel cost $/hr 637.338 649.658 -

In this paper, two performance metrics are used to analyze
the quality of the sets obtained, hypervolume and Inverted
Generational Distance (IGD). The hypervolume metric mea-
sures the area dominated by the Pareto solutions, reflecting the
dominance of sets but also promotes diverse sets [13]. Briefly,
the larger the hypervolume value, the larger the dominated
area by the set of solutions in minimization problems. IGD
compare two solution sets, in which distances are measured
from Ptrue to Pknown. This aims to reduce some of the main
problems of this metric in cases in which, for example, Pknown

has very few points, but they all are clustered together [10].
Thus, the lower the value of the IGD obtained, the better the
optimal solutions found. Since we do not have the Ptrue for
the EED problem, we used the DPF as the reference set.

As one can see in Table (VII), DPF has a bigger hyper-
volume compared to the other fronts, as expected, and its
IGD has value zero because its Pareto front is compared
to itself. WCSA has the IGD value more close to the DPF,
which is expected since this method uses only 13 (2nv + 1)
samples. REOA presents a hypervolume lower than DPF and
WCSA and its IGD is relative higher compared to WCSA, but
lower than DPFD. DPFD has the worst values for the metrics
analyzed in comparison to the other fronts.
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Fig. 5. Comparison of DPF, REOA, DDPF and WCSA without transmission
losses considered

TABLE VII
HYPERVOLUME AND INVERTED GENERATIONAL DISTANCE OF THE

FRONTIERS FROM FIG.(5)

Hypervolume IGD
DPF 0.78597 0.0

WCSA 0.76865 0.17069
REOA 0.73083 0.53257
DPFD 0.71420 0.67854

In order to verify the quality of WCSA compared to REOA,
Fig. (6) shows the number of samples for the WCSA necessary
to attain Pareto frontier of REOA. It was necessary to execute
WCSA for 10000 of samples to find out a frontier next to
REOA Pareto frontier. Table (VIII) shows the hypervolume
for the WCSA frontier for 10000 samples and for the REOA.

0.201

0.200

0.198

0.197

0.196

0.195

0.199

602 604 606 608 610

Fig. 6. Comparison of WCSA for 13, 1000, 10000 samples and REOA for
the scenario with transmission losses not considered

Based on [12], in which the author analyzes the com-
putational cost of his proposed optimization algorithm con-
sidering the number of evaluations of the algorithm, Table
(VIII) shows the computational cost for REOA and WCSA.
Each objective function has 100000 evaluations (EED has 2
objective functions) for both methods. In REOA, however,
each evaluation of a solution has an intern computational cost
of 13 (2nv + 1) to estimate the worst case of uncertainty for
the EED, which results in 260000 evaluations in total. WCSA
has an intern computational cost according to the number of
samples. As may be seen, REOA performs 0.13% of WCSA



evaluations for 10000 samples to reach approximately the
same Pareto frontier. Table (VIII) summarizes the total number
of evaluations used for each of the robust methods.

TABLE VIII
TOTAL EVALUATIONS REQUIRED TO OBTAIN THE PARETO FRONTIERS

FROM FIG.(6) AND HYPERVOLUME

Hypervolume Number of Evaluations
WCSA for 13 samples 0.76865 2600000

WCSA for 1000 samples 0.73732 200000000
WCSA for 10000 samples 0.72735 2000000000

REOA 0.73083 2600000

For the deterministic model with transmission losses, Table
(IX) and Table (X) illustrate the minimum fuel cost and the
minimum emission found considering transmission losses in
the system. We found lower values for minimum fuel cost
compared to [1] and close to values of [8]. For minimum
emission, the values found in this paper is lower than [1] and
close to [8].

For the robust model with transmission losses considered,
the results found can be seen in Table (XI) and Table (XII).
The values found in [1] are not shown because they were origi-
nally presented through graphs. For the minimum fuel cost and
minimum emission, REOA found a lower value compared to
[8]. The Pareto frontiers obtained for both deterministic and
robust models considering transmission losses are illustrated
in Fig.(7). It can be observed from the Fig.(7) that all the
nondominated solutions from the robust model are dominated
by those from its corresponding deterministic model. This
shows that solutions under uncertainties produce worse results
than solutions in which uncertainties in the model are not
considered. The DDPF for the respective DPF is also shown,
which has solutions that are more sensitive to uncertainties
compared to the REOA solutions. WCSA generated solutions
closer to DPF than REOA, which shows more robust solutions
for the same number of evaluations of WCSA.

TABLE IX
MINIMUM FUEL COST FOR THE DETERMINISTIC MODEL WITH

TRANSMISSION LOSSES CONSIDERED

This paper PSO [8] NSGA-II [1]
Minimum fuel cost $/hr 607.478 606.541 607.801

Emission ton/hr 0.2008 0.2002 0.21891

TABLE X
MINIMUM EMISSION FOR THE DETERMINISTIC MODEL WITH

TRANSMISSION LOSSES CONSIDERED

This paper PSO [8] NSGA-II [1]
Minimum emission ton/hr 0.1881 0.1864 0.19419

Fuel cost $/hr 644.642 633.708 644.133

For the scenario with transmission losses considered, the
performance metrics are shown in Table (XIII). Results for
hypervolume and IGD are very similar to that described in
Table (VII). DPF has a bigger hypervolume compared to the

TABLE XI
MINIMUM FUEL COST FOR THE ROBUST MODEL WITH TRANSMISSION

LOSSES CONSIDERED

REOA PSO [8] NSGA-II [1]
Minimum fuel cost $/hr 610.654 615.042 -

Emission ton/hr 0.2023 0.2017 -

TABLE XII
MINIMUM EMISSION FOR THE ROBUST MODEL WITH TRANSMISSION

LOSSES CONSIDERED

REOA PSO [8] NSGA-II [1]
Minimum emission ton/hr 0.1882 0.1874 -

Fuel cost $/hr 645.484 637.222 -

other fronts and its IGD has value zero because its Pareto
front is also compared to itself. WCSA has the IGD value
more close to the DPF, since this method uses only 13
samples. REOA presents a hypervolume lower than DPF and
WCSA and its IGD is relative higher compared to WCSA, but
lower than DPFD. DPFD has the worst values for the metrics
analyzed in comparison to the other fronts.

TABLE XIII
HYPERVOLUME AND INVERTED GENERATIONAL DISTANCE OF THE

FRONTIERS FROM FIG.(7)

Hypervolume IGD
DPF 0.64823 0.0

WCSA 0.63229 0.19018
REOA 0.59239 0.62293
DPFD 0.57649 0.84164

Fig. (8) compares WCSA for 13, 1000, 10000 samples to
find out how many samples are necessary to approximate the
Pareto frontier of REOA. As in Fig. (6), it was necessary
to execute WCSA for 10000 samples. In Table (XIV), the
hypervolume of the WCSA frontier for 10000 samples and of
the REOA frontier can be seen.

Table (VIII) shows that the number of evaluations are the
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Fig. 7. Comparison of DPF, REOA and DDPF with transmission losses
considered
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Fig. 8. Comparison of WCSA for 13, 1000, 10000 samples and REOA for
the scenario with transmission losses considered

same for both scenarios considering transmission losses and
not. Hence, the REOA performs 0.13% of WCSA evaluations
for 10000 samples to reach approximately the same Pareto
frontier for the scenario which considers transmission losses.

TABLE XIV
TOTAL EVALUATIONS REQUIRED TO OBTAIN FRONTIERS FROM FIG.(8)

AND HYPERVOLUME

Hypervolume Number of Evaluations
WCSA for 13 samples 0.63229 2600000

WCSA for 1000 samples 0.60454 200000000
WCSA for 10000 samples 0.59826 2000000000

REOA 0.59239 2600000

VII. CONCLUSION

In this paper, the multi-objective environmental/economic
dispatch problem has been solved using NSGA-II and Robust
Evolutionary Optimization Algorithm - REOA. The algorithm
has been run on the standard IEEE 30-bus system. The deter-
ministic and robust models have been addressed. The REOA
uses the worst case estimation of parametric uncertainties. Two
scenarios were evaluated: (i) the lossless system and (ii) when
transmission losses are taken into consideration. The Pareto
frontier for both scenarios was found. In the first scenario, for
deterministic model, the minimum fuel cost solution is better
than those found in the literature and the minimum emission
is close to the best solution found in literature. For the robust
model, the first scenario found minimum cost and minimum
emission lower than those found in the literature.

For the second scenario, in the deterministic model, the
minimum fuel cost and minimum emission solution found
is close to the best solution found in the literature. For the
robust model, the minimum fuel cost and emission solutions
found are lower than those found in literature. The simulation
results demonstrate that the solutions for the robust cases are
all dominated by their deterministic counterparts. However, if
uncertainties are not considered in the optimization model, it is
possible that a small disturbance in the decision variables may
cause infeasibility of the nominal optimal solution in practice.

Performance metrics, such as hypervolume and Inverted
Generational Distance, were also shown. The values found

showed the REOA presented lower computational cost in
number of the objective function evaluations compared to
another method with a higher cost to produce approximately
the same result set.

Thus, it is mandatory to deal with uncertainties in the EED
optimization problem considering the standard IEEE 30-bus
6-generator test system. In addition, it is important to develop
optimization methods that be able to provide robust solutions
and to operate with more reliability in real systems.
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