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Abstract—The great advances achieved in very large scale
integrated technology cause an increase in the difficulty for
routing the buses through the spacing while minimizing the cost.
The term bus defines a communication system that connects
internal components in an integrated circuit. The routing process
consists in placing the wires from the bus on space. There are
some rules, related to wire width, the spacing between obstacles,
routing direction, and others, we need to respect. The routing
process can be separated in global routing and detailed routing.
This paper presents a solution passing in both processes. In the
global routing, we use a differential evolution based approach
in a graph representation of the area to find a brute path of
minimum length to guide the following step. By the next, we use a
greedy selection to place the wires on the tracks. We compare the
results achieved using a classic flux algorithm and three different
mutation operators in differential evolution in global routing.

Index Terms—VLSI, IC, routing, bus, differential evolution

I. INTRODUCTION

The current complexity of the Very Large Scale Integrated
(VLSI) technology transforms the bus routing is a very
challenging task. Some optimizations aiming to improve the
overall functionality of these systems impose constraints on
the interconnection of elements [4]. Those factors, like the
spacing between elements, necessity of pass between small
obstacles maintaining the topology, use of multiples layers
with non-uniform track configuration, etc., are important to
consider when routing the buses. The main goal of routing is
to find out a sequence of tracks and vias to place the wires that
connect two or more components from the integrated circuit.

This class of problem divides the routing area into different
layers, where each one has a routing direction (the tracks in-
side is either vertical or horizontal) and a set of obstacles. Each
layer can only be connected with your adjacent layers, through
a via. Generally, these are two steps in traditional routing: 1)
global routing: where the routing area is divided into tiles
then turned into a graph that represents possible paths; and 2)
detailed routing, focus on place wires on available tracks.

The routing process, besides be crucial in IC’s development,
has a high level of difficult: it is necessary a great number of
resources to complete this task respecting all constraints and
with a good cost. To illustrate their importance, this problem
was one of the three at ICCAD CAD Contest 2018 [1],
a challenging research and development annual competition
focused in solve real issues from industry on Electronic
Design Automation field. It gathers competitors all over the
world to work in challenges provided by industrial companies,
fostering industry-academia collaborations. Even although that

provide solutions from others competitors, we do not use as
a comparison in this work, because they are not publicly
available yet.

This work presents an algorithm that analyzes the structure
of the routing area in order to route the more number of buses
possible, keeping the topology, without crashing between two
or more of them. It can be seen that are many different forms
to work with each constraint that can be used to represent the
problem (such as the number of layers, grid and/or direction
fixing). A mix of the best strategies on each one is the
challenging key of this work.

In the remaining of this paper, we first show the creation of
graph representation of the routing area, followed by global
routing creating. Detailed routing comes after, and lastly the
results are shown.

II. RELATED WORK

There many approaches in bus routing that solves problems
with some differences. For example, [3] presents a solution in
gridless layers, while [10] focus with one layer problems.

The routing process can be split into global and detailed
routing, in order to limit the search space [6]. Besides detailed
routing takes majority part of execution, the most improves are
made in global routing.

We use some insights from those approaches cited before
in our solution. Between them, [10] proposes the creation
of independent regions, that illustrates obstacle-free areas in
routing space, by slicing space with obstacles boundaries and
then merging adjacent ones. [3] and [2] presents a connection
graph approach addressed to find a possible route in gridless
representations. According to [6] gridded approaches use a
Dijkstra’s algorithm variants to get shortest paths in one layer
situations. Besides, [7] presents a heuristic approach, using
Differential Evolution to find a better solution. Although all
of them works on bus routing, the constraint on those solutions
are slightly different, distinguishing them of our problem.

III. PROBLEM FORMULATION

This problem consists in, given a routing area and a set
of obstacles, connect the pins of a group of buses using the
available tracks on different layers. Both routing area and
obstacles are defined by rectangles. Each layer contains:

« a routing direction, that defines if all tracks inside it are
horizontal or vertical;
¢ a spacing needs to be held between every item;



« his set of tracks, that each one is defined by a line and
their width.

Lastly, a bus is defined by a set of bits with two or more pins,
that have a width constraint for each layer.

The Figure 1 presents a example of routing. In this figure,
the orange rectangles represents the pins of the bus, the red
rectangles are obstacles and the dot lines are tracks. The
continuous lines in 1b represents the wires placed after the
routing.

(a) Input example

(b) Output example

Fig. 1: Example of an input (a) and your respective output (b).
All layers are drawn together for simplicity purposes.

The overall cost (Equation 8) calculate the quality of the
solution: the smaller it is, better the solution. It consists of
the result from routing cost with a penalty applied to it.
There are two types of penalty: spacing and route fail. The
first consists in a spacing constraint not respected, and sum a
weighted cost according to Equation 5. Otherwise, a routing
fail disqualifies the solution, for this bus. The fail penalize by
Equation 6. There are three factors that can define a routing
failure, illustrated by Figure 2, that is:

(a) A bit is disconnected
(b) A wire is off any track or in a track with lesser width
capacities
(c) A bit not follow the topology. In other words, all bits from
a bus need to have the same number of segments with the
same sequencing.
If any of this happens, the routing is considered fail.

The routing cost is evaluated due three measures: 1) wire
length cost, that consist in a normalized sum of length of all
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(c) Topology error
Fig. 2: Example of routing fails.

wires, calculated as shown in Equation 1; 2) segment cost, that
count the number of segments, described by Equation 2; and
3) compactness cost, that calculate how close is the segments,
given by Equation 3. In an ideal case, all of those values
are close to 1. The constants associated of each measure on
Equation 4(«, S and ~y) are given on the input, and can change
for each problem. The cost functions are described below:
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IV. METHODOLOGY

For routing, we first order the buses according to the number
of wires. As the cost of routing fail is the same for any bus and
the bigger occupy more resources, it is worth route the minors
first. We find the graph representation of the area initially, once
it is the same for all buses. Then, for each bus, we perform
global followed by detailed routing. The Figure 3 presents the
flux of our algorithm.
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Fig. 3: Routing Flow

A. Creating the Graph

For global routing, we use a weighted graph for represent
the routing areas. Each vertex denotes a free area (where
are no obstacles inside) and the edges are adjacency between
areas, with their weight equal the number of tracks on these
connections. The use of this representation ensures that any
segment placed in one of his areas will not collide with
obstacles.

To mount this graph, we use the steps ahead (exemplified
by Figure 4):

1) Expand obstacles: besides avoid collides, there is a need
to keep a spacing between obstacles and wires. To include
this on our representation, we increase the size of obsta-
cles equal to spacing constraints, so the spacing becomes
an interdicted area. In the Figure 4, from 5c to 4b has an
increasing of the obstacles size, representing this process.

2) Define free areas: to get the space division, we create lines
along the obstacles borders and routing area limits. Those
lines define rectangles where is guaranteed to have no
obstacles inside. These rectangles can be used as vertices.
The merging is according the routing direction of the
layer: if is an horizontal, first we merge the rectangles
horizontally and then vertically, otherwise the opposite is
done.

3) Merge areas: a large number of items are created in the
last step, that could lead to a high execution time. So
we merge the areas that have an exactly common border,
transforming small areas into a bigger without cover any
obstacle.

4) Getting edges: basically, there are two types of edges: the
ones in the same layer and that who connect two layers.
The first is defined by the existence of a border between
the rectangles, while the second occurs when two areas
in different layers overlap each other. In both cases, the
weight is the count of tracks on those encounters.

We first executed the steps 1 to 3 in each one. How these
steps use only data from one layer, in other words, there are no
dependencies between layers, we can process them in parallel,
gaining performance. However step 4 connect adjacent layers,
so it is only performed after the previous be finished on all
layers.

(d

Fig. 4: Example of graph creation. (a) is the original layer, (b)
presents the obstacles expanding and free area creations, (c)
demonstrates the merging and (d) is the final graph for this
layer.

B. Global Routing

Once we have the graph representation, we can perform the
global routing, in order to indicate the areas we can get tracks
to connect the pins. This step consists in finding a Steiner Tree.
The best solution are indicated by an Minimum Rectilinear
Steiner Three. However this problem is well-known as an NP-
complete [5]. The MRST is a tree that connects all terminals
with the minimum cost.



Initially we mark the terminals node, those vertices who
contains pins. Each bus has, at least, two sets of pins. Because
of the way we create the graph, the entire set not necessary
will be on the same node. However, we need only one source
and one sink. For help this, we create two new nodes on the
graph: one to be the source connected in original input nodes
and other to be the sink connecting all outputs. The Figure 5
presents this process.

(a) (b)
(©)

Fig. 5: Example of terminals union on graph. (a) is the original
graph. (b) shows the marked terminals and (c) the union of
them

An early solution to find an Steiner Tree is the use of a flux
algorithm. On the given graph is used an implementation of the
Ford-Fulkerson method, defining a target flux, as the number
of wires from the bus, and getting one path that fulfills this
flux. This algorithm is a greedy solution for the problem, once
it gets the first route that passes all wires.

Trying to improve the solution, we can use a differential
evolution approach. As Differential Evolution is used in con-
tinuous space [9], we use a modified version proposed by [7].

The DE technique consists in the generation of represen-
tations of solutions, called individuals, passing through an
initialization followed by a sequence of mutation, crossover,
and selection towards finding a global optimum. Each pass is
explained below.

« Initialization: consist in a generation of a population
of M individuals. An individual is an adjacency matrix
representation from a graph. Each one starts with an
initial solution created by randomly selecting edges, and
their weights, from the original graph. We ensure the
feasibility from those individuals, in other words, they
represent a feasible graph connecting the initial and final
nodes. Besides find the MRST is hard, find a non-optimal
solution is easier.

o Mutation: a process that transforms an individual, switch-
ing some cells values according to a random factor,
since new solution remains feasible. An individual is
considered feasible if: 1) the edges weights not pass the
number of wires from the bus; and 2) the topology is not
broken for any wire. The classic mutation is represented
by Equation 9. The variables v and z are vectors usually,
but they are a matrix in our solution, as we use this
representation. pl, p2,p3 € [1, M] are random numbers,
i # pl # p2 # p3 and F is a number. Furthermore,

originally F' is a real number, but as we are in discrete
space we use as an integer.

Vi = Xp1 + F(l‘pg — Jﬁpg) 9)

Other types of mutations that can be used also, as ex-
emplified in [8]. The Equation 10, denoted as DE/rand/2,
is an example. It uses 2 scaling factors [, giving more
spread solutions.

Vg = Tp1 + Fi(zp2 — xp3) + Fo(xps — xps)  (10)
This last Formula (11) presents a other method for
mutation. In this formula, z; ¢ is the trial individual (we
explain it in the next step).

Y

Vi =X + Fl(!IIpl — $1) + FQ(CIJPQ — iCpg)

o Crossover: combines one new selected individual, named
trial, with the mutated one, by switching their columns
controlled by a crossover ratio. We generate a random
number: if it is greater than a given crossover ratio we
copy the column from the trial matrix, otherwise we
copy from the mutant. The new individual created in this
process is named target solution.

o Selection: gets the best between target and trial individ-
uals. Their fitness, that shows how good is the solution,
is calculated by counting segments used: The less used,
better. If the target individual has minor fitness compared
with the trial, it included in next generation.

The Figure 6 presents the differential evolution flux of
execution. These steps are repeated until the stop criteria
are reached. In this work, we use a simple maximum of
generations equal 10000 as criteria.
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Fig. 6: Flowchart from Differential Evolution Algorithm



To maintain the topology on all bus, we need to pass every
wire in nearly the same route, so the whole bus is routed as a
unity. One bus is routed at a time, but as the problem requires
route multiples buses, there is a need to refresh the graph,
removing from the use edges the capacity already spent.

C. Detailed Routing

This final step is the more delicate process to be solved: we
need to select on which tracks we will place each wire, using
the areas found by global routing.

We define a queue with the initial nodes (those that belong
to the first set of pins). To set the firsts active tracks, to guide
the path to the next node, we get one track that overlaps with
your respective pin (according to the problem formulation,
there at least one track overlapping with each pin). If this
track is in the same layer from pin we can pass for next step
directly, but it can be on another layer. In this case, we need
to create vias connecting those layers before proceeding.

For every node, starting from the initials cited before, we
add all his children on a queue, if it is not a final node (has no
pins), and do the internal routing based on actual and his next
nodes. To maintain the same topology on all bus, we route all
wires inside a node before pass for the next, so we need to
save the active track (last used for placing) for each wire. In
the internal routing we have two possibilities: the next node
is 1) in the same layer or 2) an adjacent layer.

In the first case, we need to connect the active track with
a going out. If it can not be done directly, we find the first
one that meets the requirements of width and connect those
two by a free segment on another layer. That segment is first
sought out in adjacent layers, and deeper if necessary, creating
vias to connect those layers. Once we can get an out track,
we set this the active track and pass for the next node.

If the next node is in an adjacent layer we just find a possible
track, according to requirements, inside the next node and get
the intersection point. A via is also created and we advance,
refreshing the active track.

How two wires can not cross, every segment created add
an extra obstacle. This creates a need for always test if has
a collision before creating the wire, once this obstacle is not
represented in the graph created previously.

This process is repeated while the queue is not empty. After
this, is made the routing inside the final nodes. They have a
different approach. In this case, we don’t seek an out track,
but the pin of his wire. So we get one track that overlaps with
the pin, what is guaranteed to exist, and get the connection
with the active track as we did before.

The Figure 7 presents an example of detailed routing: 7a
shows the nodes selected by global routing, with tracks and the
pins in orange; 7b presents the initial active tracks set, in red.
In this case a direct route can be traced for the next node, so the
destiny tracks are equal to the actives ones; 7c demonstrates
the creation of segments on the first node and passing for
next. The actives tracks is set to be the destiny tracks, in this
case they still the same; 7d show the creation of segments

from second node. In this case, we use a middle segment on
another layer for connecting origin an destiny tracks.

= T

(© (d)

Fig. 7. Example from detailed routing. Only one layer with
all resources is shown for simplicity purposes.

If a bus can not be fully connected with this previous steps
all segments are discarded, avoiding use spaces that could
connect another bus. After try route all buses, another try is
done for those not connected. As a great number of routing
resources is likely to be used, there is a large probability of
another route be selected on global routing.

V. RESULTS

Our algorithm was developed using the C++ language and
executed in an Intel 17 4770 with 16GB of memory. The initial
part of the process, that defines the free areas for each layer,
is built in parallel since they did not affect each other. For test
were used 8 cases, described in Table I, consisting in parts
of real designs simplified. Those designs were provided by
the ICCAD CAD Contest 2018, as part of their contest. As
explained before, we not use the others contestant results for
comparison once there is no base for this: their works are not
publicly available yet.

#nets | #buses | #tracks
beta_l 1260 34 49209
beta_2 | 1262 26 49209
beta_3 665 60 22732
beta_4 698 62 22732
beta_5 1964 6 54150
final_1 | 1032 18 81226
final_2 | 1285 70 14209
final_3 852 47 21379

TABLE I: Test cases configurations

In Table II besides total cost, we show a detailed cost
achieved, presenting the routing cost, spacing penalty and
routing fail calculated as shown in problem formulation,
respectively the Equations 4, 5 and 6.



CR Ps Pf Total Cost
beta_1 | 3252.18 | 6128 6000 15380.18
beta_2 | 2564.26 | 5984 2000 10548.26
beta_3 | 7428.14 | 8246 8000 23674.14
beta_4 | 7274.38 | 7528 | 14000 | 28802.38
beta_5 | 4342.62 | 4584 0 8926.62
final_1 | 4264.14 | 6730 2000 12994.14
final_2 | 8212.44 | 9728 | 16000 33940.44
final_3 | 4362.82 | 4580 | 4000 12942.82

TABLE II: Detailed results with our flux algorithm

This result shows that the only case had every bus routed.
All others keep, at least, one unrouted bus. Also, there is a
considerable number of spacing penalties, the most of them
between wires or vias from another bus. It shows a point of
improvement on detailed routing.

To evaluate the impact on global routing, in Table III we
present the routing cost achieved, calculated by Equation 8§,
with 4 different algorithms:

1) Ford-Fulkerson, the flux method based algorithm;

2) DE/rand/1, a differential evolution with the classic muta-
tion (random individuals selected and one scaling factor);

3) DE/rand/2, also a differential evolution with random
individuals selected on mutation, but with two scaling
factors;

4) DE/cur-to-rand/1, other differential evolution algorithm,
but with mutation using a combination of the trial indi-
vidual with randoms selected.

Those differential evolution methods only discern on muta-
tion, each one using an operator. Their operators are explained
on Global Routing section, and are guided by equations 9,
10 and 11. For evaluation were used populations of 1000
individuals, crossover ratio of 0.8 and the following values:
F=1,F, =2and F» = 1.

Ford-Fulkerson | DE/rand/1 DE/rand/2 | DE/cur-to-rand/1
beta_1 15380.18 1224418 9482.18 10142.18
beta_2 10548.26 8288.26 8102.26 5864.26
beta_3 23674.14 21648.14 16820.14 18048.14
beta_4 28802.38 24680.38 21204.38 16928.38
beta_5 8926.62 8842.62 5068.62 4898.62
final_1 12994.14 10684.14 8120.14 6860.14
final_2 33940.44 31826.44 24962.44 27206.44
final_3 12942.82 10896.82 5824.82 8004.82

TABLE III: MRST algorithms comparison

The graph from Figure 8 shows the sum of costs from all
test cases for each variation. We can see that the flux algorithm
has the bigger cost, showing their inefficiency compared with
others. The two variations from the classic mutation on DE
algorithm, DE/rand/2 and DE/cur-to-rand/1, has similar results
and are the best. Comparing execution time, the flux one is
about 2x faster than DE’s. The variation of mutation does not
affect so much the time.

VI. CONCLUSION

This work create a multilayer gridded routing method work-
ing under a strict set of constraints. Initially, we transform the
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Fig. 8: Sum of costs from all test cases

routing space in a graph representation to simplify the routing.
We explore a set of different approaches in global routing,
finding the best suitable between them. The improving on
algorithm was focused on global routing, opening possibilities
to studies on detailed routing. Finally, we use a simple
placement wire in detailed routing, performing it as a batch,
ensuring the topology maintenance.

Our algorithm could route most of buses from simplifi-
cations of real designs from industry of VLSI. The results
shows best solutions using the differential evolution algorithm.
As it was developed for continuous problems, the use of
other evolutionary strategies for discrete problems (like Tabu
Search or Iterated Local Search) can improve the solution.
The detailing shows a considerable spacing penalty, it creates
space for improving on detailed routing, avoid this cost.
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