
Toward Nanometric Scale Integration: An
Automatic Routing Approach for NML Circuits

Pedro Arthur R. L. Silva∗, José Augusto M. Nacif∗
E-mail:{pedro.arthur, jnacif}@ufv.br

∗Universidade Federal de Viçosa, Florestal, MG, Brazil

Abstract—In the recent years, many technologies have been
studied in order to take place as a replacement or complement
to CMOS. These emerging technologies, known as Field Coupled
Nanotechnologies, seek to operate at nanometric scales and over-
come the problems that are hard or impossible to be addressed by
CMOS technology. However, these new technologies introduce the
need of developing tools to perform circuit mapping, placement,
and routing. NanoMagnetic Logic Circuit (NML) is one of
these emergent technologies. It relies on the polarization of
nanomagnets to perform operations through majority logic. In
this work we propose an approach to automatically map a gate-
level circuit to a NML layout. We use the Breadth First Search
to perform the placement and the A* algorithm to transverse
the circuit and build the routes for each node. To evaluate
the effectiveness of our approach, we use a series of ISCAS’85
benchmarks. Our results show an area reduction varying from
20% to 60%.

I. INTRODUCTION

For many years and still now, the CMOS (Complemen-
tary Oxide Semiconductor) has been considered the standard
technology in the manufacturing of digital devices. However,
as the density of integrated circuits increases, problems with
reliability and power dissipation are rising at an alarming pace.
Therefore, new alternative technologies such as Field Coupled
Nanotechnologies (FCN) have recently attracted researchers
attention [1], [2]. Quantum-Dot Cellular Automata (QCA) [3]
and Nanomagnetic Logic (NML) [4] are two of these emerging
technologies. NML is a non-volatile FCN and operates based
on field interactions between nanomagnets. NML technology
operates at room temperature with ultra-low power dissipa-
tion [5]. Also, in NML circuits the computation is conducted
based on majority logic, that can be used to implement any
logic function [6].

The NML basic cell is a bistable nanomagnet whose po-
larization is likely to lie alongside its long axis, in order to
minimize the shape energy. The two possible configurations
for the polarization of a NML cell are up and down, as depicted
in Fig. 1, respectively seen as the logic states 1 and 0. A
nanomaget interacts with its neighbor through magnoestatic
dipolar coupling. Relying on these interactions the information
can be propagated in the circuit as ferromagnetic or antifer-
romagnetic coupling. The behavior of how NML transmits
information is possible due to how magnetic interaction works.

As the NML circuits become more complex, the need of a
clocking scheme turns out to be more relevant. A NML circuit
with few magnets reproduces the coupling correctly. However,

Fig. 1. Polarized NML cells.

as the size of an array of nanomagnets increases, it is most
likely that the circuit will present more errors as well [7]. A
clock scheme controls the flow of information in the circuit,
enabling the design of more complex NML circuits. As the
integration levels of NML circuits increase, the design of the
circuits becomes a complex process, being unfeasable to be
performed manually.

Since the CMOS has been the leading technology to build
digital electronic devices, the literature presents a well estab-
lished set of papers that address the problem of automatically
generating a physical circuit layout with CMOS. Although
NML can overcome many of the challenges that emerge at
nanometric scale, the technology is not fully mature yet, and
there is a lack of tools and techniques to aid the process
of physical design of NML circuits. Due to the differences
between CMOS and NML technologies, and the several con-
straints presented by the latter, the current tools and techniques
are not suitable to generate an efficient NML circuit physical
layout. Furthermore, the synchronization constraint added by
the use of a clock scheme impacts directly in the circuit area
and delay.

Synchronized circuits all have a throughput of 1, meaning
that at every clock cycle a result arrives at the outputs. A
throughput of 0.5, for example, means that the results arrive
at the outputs at every 2 clock cycles.

In this paper, we propose the utilization of an alterna-
tive algorithm to route wires in NML circuits exploring
the synchronization constraint. We apply the A* search [8]
to interconnect the components of the circuit. We compare
the total area occupied when the circuit doesn’t respect the
synchronization constraint and when it does.

This work is organized as follows: Section II reviews the
basics of NML technology. Section III discusses previous
approaches for automatic design of QCA and NML circuits.
Section IV presents an algorithm for automatic layout gener-



ation of NML circuits. In Section V, we use the ISCAS’85
[9] benchmarks to perform the routing of circuits and an
analysis on the performance of our algorithm and the trade
between area and throughput of the circuit. Finally, Section
VI concludes this work.

II. BACKGROUND

In this Section, we present an overview on Nanomagnetic
Logic (NML), explaining the basic devices of the technology,
how they can be used to implement complex circuits, and how
a clock scheme controls the flow of information in the circuit.

Although a nanomagnet can present several geometries, in
this work we assume the rectangular-shape nanomagnet, as
shown in Fig. 1. As explained before, an NML cell is basically
a bi-stable nanomagnet whose magnetic polarization is likely
to lie alongside the longer axis, in order to minimize the shape
energy. The two possible configurations for the polarization of
an NML cell are up and down, respectively. When we apply a
magnetic field to the shorter axis of a nanomagnet, it changes
to a meta-stable state, mapping to a null logic state [7].

Wires are the basic element to propagate information in
circuits. In order to transmit signals through the circuit,
such elements can be arranged in two configurations due to
the coupling interactions between the nanomagnets. The two
configurations in which the propagation may occur are anti-
ferromagnetic and ferromagnetic. Antiferromagnetic, presents
antiparallel direction of the magnetization vectors, while the
latter, ferromagnetic, presents a parallel orientation. An in-
verter in NML can be formed exploiting the wire structure.

Wires with an odd number of cells just propagates the
information through the wire, but if the wire is composed of
an even number of particles it yields to an inverter. Another
important element of NML is the majority voter gate. The 3-
input majority gate replicates on the output the logic level of
majority of the inputs of the gate. We can reduce the majority
voter gate to an AND or OR gates by fixing one of the inputs
in 0 or 1 logic levels. Therefore, by relying on the majority
and inverter gates, it is possible to implement any kind of logic
function.

Seeking to guarantee the correct functionality of NML, a
clocking system is extremely important. Without a clocking
scheme, the circuit is most likely to present meta-stable states,
leading to incorrect functionality. The clocking system in
NML is composed of three clock zones. Each clock zone
is controlled by a periodic clock signal composed of three
phases called Hold, Reset, and Switch. In the Hold phase,
the magnetization of the nanomagnets remain unchanged. In
the Reset phase, the magnetic field is applied, inducing the
nanomagnets into a null magnetization state. In the Switch
phase, the magnetic field is gradually removed, allowing the
nanomagnets to polarize according to their neighbors. When
a circuit is split into clock zones, the magnetic fields act upon
each zone independently, thus eliminating errors. A clock cycle
in NML is the time a clock zone needs to pass through all these
three phases.

III. RELATED WORK

Considering that QCA and NML are not the leading
technologies for integrated circuits manufacturing, there are
few works that investigate automatic methods to generate
physical layout of circuits in these two technologies. There
are three works that mainly contributed to this paper, in two
of them algorithms for placement and routing of QCA circuits
are proposed [10], [11], and the last one describe the design
of a CAD (Computer Aided Design) tool for NML [12].

NML and QCA present some similarities, but there are
differences as well. One of the main differences is in the clock
scheme, while QCA has four clock zones, NML only counts
with three. Also, there are some layout rules unique to NML,
such as wires with an even number of nanomagnets acting as
inverters. The approach presented in [10] also allows multi-
layer layouts. A multi-layer solution for NML technology
has not yet been proposed, all NML circuits are single-layer.
Therefore, if one desires a NML physical design, the approach
presented in [10] must be adjusted to meet this requirement.

Recently, another work that investigates the automatic de-
sign of QCA circuits has been proposed [11]. The work
proposed an exact method to build circuits, respecting some
design objectives and physical constraints. In order to generate
a QCA layout for a given circuit the authors relax some of
the constraints, as the maximum area of the circuit or whether
wirecrossing are allowed or not. In QCA, one of the ways
to implement wirecrossing is by relying on the multilayer
resource. In [11], the authors compare designs of the same
circuit generated with and without wirecrossing, and evaluate
the overall impact on the final area of the circuit. But in
NML, since we cannot rely on the multilayer resource, we
must address this issue as well.

In [12], the authors present a CAD tool able of design, test
and simulate NML circuits. The authors explore a series of
optimizations in order to achieve an efficient design in terms of
area and delay. To perform the desired optimizations, heuristics
and metaheuristics such as the BaryCenter [13] and Simulated
Annealing [14] were implemented. Although [12] presents an
important step in the automatic design of NML circuits, the
investigation of more methods to automatically perform this
task is still a work in progress. Our mainly focus on this work
is to investigate an alternative approach that can be used to
route interconnections in order to generate an physical design
of NML circuits. Another important objective of this work
is to explore the synchronization constraint of NML circuits.
In [15], this analysis has already been made for general QCA
circuits, but since NML presents its own unique characteristics,
this analysis can lead to different results.

IV. METHODOLOGY

Routing is one of the many phases that compose modern
integrated circuit design flow. Even though our goal is to
explore an algorithm for Routing of NML circuits, we have to
pass through all the phases that precedes the one we are fo-
cusing on. Subsections IV-A and IV-B give more details about
the Graph Elaboration and the Placement phase, respectively.



Subsection IV-C explain about our approach to route NML
circuits.

A. Graph Elaboration

Our first task is to read a Verilog circuit description and
transform it in a graph, that is easier to manipulate. Before we
take the Verilog description as input to the parser, we guarantee
that all the gates in the description of the circuit have at most
two inputs, as shown in Fig. 2. We have to do this because in
NML, there are few proposed gates yet, and the wide range of
them are 3-input, being one of the inputs a fixed cell. Some
works have given attention to majority logic synthesis, such
as [16], [17], but yet, most part of the circuit benchmarks
work with gates that have a high fan-in, that is, high quantity
of inputs to manipulate.

Fig. 2. Fan-in management

In order to do this, we use ABC [18], a well known tool
for logic synthesis. Given a file with a Verilog description
of the circuit we execute the script depicted in Fig. 3. First
we read the Verilog file with the description of the circuit,
then we transform it in And-Inverter Graph(AIG), a type of
representation of digital circuits that use graphs in which each
node is a AND gate. Then, we use the strash command to
perform a transformation in the structure of the circuit and
return a logical network composed of only two-input AND
gates and inverters. The last step is to write the structure to a
new Verilog file with the output circuit that will be given as
an input to our parser.

read_verilog
aig
strash
write_verilog 

Fig. 3. ABC script to generate circuits with 2-input gates.

Our implementation of the parser read the Verilog generated
by following the script described in Fig.3 and then returns a
Directed Acyclic Graph(DAG) in which each node is a logical
element of the circuit and an edge going from a node u to a
node v means that the former node is an input of the latter.
Before we can go forward to the next phases, we perform
the Fan-out management as proposed in [12], to control the
number of inputs that a determined gate can fed, that is, to how
many other gates its inputs are connected. We also perform the

graph balancing in order to guarantee the synchronization of
the circuit.

1) Fan-Out Management: In a DAG that represents a digital
circuit, each edge between two nodes indicates that in the final
NML circuit design there is a wire connecting those two logic
elements. The number of inputs a logic gate can drive is called
fan-out. In both CMOS and NML, a gate has a limit to how
much others gates it can fed. Generally, digital circuits do not
respect these limits. Therefore, we must perform a search in
the graph for the nodes that violate this constraint and then
map them to nodes that are in compliance with this constraint.
This can be done by adding children to a node and then
redistributing its old children as children of the new nodes. In
Fig. 4, we depict the result of the fan-out control operation.
In Fig. 4a we depict a graph that doesn’t respect the fan-out
constraint. Fig. 4b shows the same graph but with a constraint
of a fan-out of two outputs. Before, node A was input to four
other nodes, to solve this, we introduce the nodes A1 e A2 as
its new children and then split the four old children among
the nodes we have just created.

(a) Graph before Fan-Out Control (b) Graph after Fan-Out Control

Fig. 4. FanOut management of circuit.

2) Reconvergent Paths - Graph Balancing: The synchro-
nization of NML circuits are extremely related with the length
of the paths in the circuit. The distance between a logic
element and each one of its inputs must be the same. This
phenomenon is know as the layout=timing problem [19],
inherent to QCA and NML. All the paths leading to the same
logic element must have the same delay in terms of clock
cycles. If an input signal arrives at its output before any of
the others, an unexpected computation is performed. These
paths are named reconvergent paths.

Two paths are called reconvergents if they diverge from
and then reconverge to the same logic element or block [20].
In [10], the authors take advantage of the reconvergent paths
in order to elaborate their approach. In this work, as in [12],
we choose to balance the reconvergent paths before generating
a physical layout of the circuit. In order to balance the recon-
vergent paths, we introduce wire nodes in all the unbalanced
paths. This step is essential to eliminate asynchronicity from
the circuit. However, this leads to an inevitable increase in the
area of the circuit. Fig. 5a depicts an unbalanced graph. One
can see that are two paths that start in S and end in T, however,
the size of these two paths aren’t the same. So, we introduce
a wire node W1, yielding the graph in Fig. 5b.

In Section V we investigate more about the impact of circuit



(a) Unbalanced Graph (b) Balanced Graph

Fig. 5. Reconvergent Paths.

balancing in the final area.

B. Placement

After the graph elaboration is complete, the next step
is generate a mapping the circuit to a grid in which the
componets can be allocated and then interconnected. This task
can be split into two major subtasks: Placement and Routing.

The Placement of a circuit is the stage in which we
define the physical position of each logical element in the
circuit. In this phase of the project, one of the main concerns
is to guarantee that we have enough area left, so we can
interconnect the elements in the Routing stage. As the number
of elements in the circuit increases, the Placement becomes
more complex. We have to avoid the congestion of regions,
because this leads to a poor Routing of the circuit, since more
wires are necessary to work around a congested area, what
leads to a bigger solution space, therefore impacting in the
execution time of the algorithm and the final area of the circuit.

In this work, we seek to find a better placement by topo-
logically ordering the graph of the circuit. What we try to do
is to put a parent right above its children, this way, we can
reduce the total wire length of the circuit, since the adjacent
nodes will be physically near to each other. In order to achieve
our goal, we utilize the Breadth-First Search (BFS) algorithm
[21]. This algorithm starts the search from a given initial node,
discovering others nodes from the neighbors. This is done with
all the nodes until there are no more nodes left in the graph.
Our BFS search starts from the inputs of the circuit, assigning
a position for each node as soon as they are discovered in the
search. If a node is visited more than once, the first position
assigned for it prevails. We do not perform further optimization
in the placement phase, since in this work our focus in the
routing phase.

C. Routing

Once the position of each element is defined, we can finally
perform the Routing of the circuit. This stage is responsible
for connecting the inputs and outputs of the components in
the circuit, that is, finding routes between the connected logic
elements. We use the A* search algorithm [22] to perform the
routing. This approach is widely used in problems in which
one needs to find a path while avoiding obstacles. In our case,
the obstacles are the congested areas, that is, areas in the circuit
in which we cannot route wires anymore.Since in NML the
wire crossing is only possible when it involves only two wires,
we define an area as congested when we have more than two
wires crossing at the same point.

To build paths, the A* search relies on an evaluation
function to estimate the total cost of the path through a node
N to the goal. This function is depicted in Equation 1. In the
evaluation function, g(N) is the cost so far to move from the
source point to N. The factor h(N) is the estimated cost from N
to goal. One has to pick the best heuristic in order to estimate
the cost h(N) according to the nature of problem.

f(N) = g(N) + h(N) (1)

When transversing the solution space, the algorithm will
look for the candidate that has the lowest cost of f(N). The
heuristic we choose to the apply to the routing problem is the
Euclidean Distance between two points. Considering a node N
and a goal, Equation 2 depicts the calculation of this heuristic.

dx = abs(N.x− goal.x)

dy = abs(N.y − goal.y)

h(N) =
√
dx2 + dy2

(2)

In Fig. 6 we depict how A* makes intelligent choices at each
step. The red block is the starting point, the gray blocks are
not available, so the search has to go around them and arrive
in the target, the green block. One can see that the algorithm
goes from the position (4,2) to (5,3) instead of (4,3). Similarly,
the algorithm goes from (5,3) to (6,2) instead of (6,3).

Fig. 6. A* algorithm pathfinding.

Our algorithm transverse the graph that represents the circuit
from the inputs to the outputs layer by layer. In each layer,
we apply the A* search to the nodes, connecting it to all
its children in the next layer. At the end of the traversing
we accomplish to build all the interconnections of the circuit,
completing the Routing phase.



Each time a position is chosen to be part of a route, that
is, an interconnection between two elements, that position
is marked, so we can control how much wires are passing
through a location. When a position has two wires passing
through it, then we map it to a Crossover element. Once a
position is mapped to a Crossover, we mark it as a blocked
position, because it is impossible to implement a Crossover
with more than two wires in NML.

In NML, we do not have problems with diagonal paths as
the one depicted in Fig. 6. In fact, in some situations this kind
of paths are quite helpful, since it acts as a ferromagnetic wire.

V. RESULTS

In this section we focus on analysis and comparison of the
proposed algorithm for circuit routing and also the impact of
path balancing in NML circuits.

To this end, our algorithm has been implemented using the
C++ programming language and all evaluations have been
conducted on an Intel Core i5-7200U machine with 2.50 GHz
(up to 3.10 GHz boost) and 8 GB of RAM memory.

A. Benchmarks

To perform our analysis, we selected some benchmark
circuits [9], [23], [24], and also included some circuits gener-
ated using the ABC synthesis tool [18]. Our benchmarks are
presented in Table I.

TABLE I
INFORMATION OF THE BENCHMARKS.

Benchmark Gates Inputs Outputs

c17 12 7 5
t 15 10 5

newtag 20 12 8
FA-AOIG 12 9 3

B1 r2 16 13 3
XOR5 r 37 32 5

XOR5 r1 31 26 5

B. Circuits routing comparison

Since previous works do not focus on the routing phase
of circuit project, we do not have a fair way to compare the
results of our work. Hence, we have to find a way to evaluate
the performance of our algorithm. So, we work with the graphs
before and after the balancement explained in Section IV-A.
Table II depicts the comparison of execution times for each
graph. We executed the algorithm 30 times for each circuit
and then take the mean time of the executions.

TABLE II
TABLE OF COMPARISON OF EXECUTION TIMES FOR THE BALANCED AND

UNBALANCED GRAPHS.

Running Time (seconds)
Benchmark Synchronized Unsynchronized

c17 0.126713 0.73023
t 0.148908 0.084475

newtag 0.136516 0.084625
FA-AOIG 9.44082 0.100597

b1 r2 0.163079 9.66193
xor5 r 18.6761 0.183467
xor5 r1 0.268849 0.19861

One can notice that, generally speaking, the A* search takes
more time to perform the routing of synchronized circuits. This
makes sense since this set of circuits has a high number of
nodes than the second one. However this is not a absolute
rule. The unsychronized b1 r2 takes more time to be fully
routed than its synchronized version. This can occur when
we face circuits with higher number of blocked cells, that is,
crossover along the algorithm. In general, one can notice that
the algorithm has shown a relatively small time to interconnect
all the elements in the circuit. This suggests that A* is a good
choice for routing NML circuits. To the best of our knowledge
we are the first to apply the A* search to solve the Routing
phase of NML circuits.

C. Graph elaboration impact

In [10], [11], the authors do not perform a preprocessing
in the circuit graph in order to manage the maximum fan-out
allowed. Once we choose to add this step to our approach
we increase the number of nodes. Also, the synchronization
effect inherent to NML circuits may lead to a huge increase
in the number of nodes in the circuit, which lead to circuits
that consume more area. In [15], the authors show that by
relaxing the synchronization constraint, we can achieve less
area circuits. Table III shows the new areas for the set of
benchmarks we are working. The table depicts information
regarding the graph before and after we perform the operation
cited in Section IV-A.

The latency column indicates how long, int terms of clock
zones, is the largest path in the graph, that is, the critical
path. One can notice that the latency for both graphs are the
same, this occurs because after we apply the operations of
fanout management and path balancing, the critical path of
the original circuit remains intact. Hence, the latency of the
synchronized circuit is equal to the original one. It is worth
to mention that this only occurs because we are performing a
high level evaluation of only the nodes in the graph instead of
the actual circuit.

In Table III, we calculate the fourth column for the un-
synchronized circuits according to the method described in
[15]. Just by looking to the number of nodes, one can notice
that, generally speaking, unsynchronized circuits consumes
less area than synchronized ones. When we look to the grid
area, then we see that this really applies in the practice, we
have reductions in the grid area varying from 20% to nearly
60%.



TABLE III
SYNCHRONIZATION COMPARISON

Synchronized Not synchronized

Benchmark Gates Inputs Outputs Grid area Number of
nodes Latency Grid area Number of

nodes Latency Throughput

c17 12 7 5 40 23 6 32 12 6 0.5
t 15 10 5 40 25 5 32 15 5 0.5
newtag 20 12 8 70 27 10 70 20 10 0.333
FA-AOIG 12 9 3 56 26 10 24 12 10 0.2
B1 r2 16 13 3 50 23 6 16 16 6 0.5
XOR5 r 37 32 5 216 64 28 88 37 28 0.1
XOR5 r1 31 26 5 216 58 28 88 31 28 0.1

VI. CONCLUSION

NML is a novel technology that has shown promising
results, but that are few tools to aid the design of circuits
in this nanotechnology. The work in [12] is one of the few
works in the literature regarding NML assisted by CAD tools.

In this work, we propose a way to perform the routing
of NML circuits and, to the best of our knowledge, we are
the first to utilize the A* algorithm in order to perform the
interconnection of components. The chosen algorithm has
presented a promising performance in terms of speed, and also
it show some characteristics that are very suitable to design
NML circuits. We also studied the impact of synchronization
constraint on NML circuits, showing that is possible to make
a trade between area and delay, providing the designer of the
circuit more flexibility when building NML circuits.

As future work, we plan to investigate more about the
routing phase, applying other algorithms, and also explore the
placement.

ACKNOWLEDGMENTS

We would like to thank CAPES, CNPq, and FAPEMIG for
the financial support.

REFERENCES

[1] R. K. Cavin, P. Lugli, and V. V. Zhirnov, “Science and engineering
beyond moore’s law,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1720–1749, 2012.

[2] T.-J. K. Liu and K. Kuhn, CMOS and beyond: logic switches for
terascale integrated circuits. Cambridge University Press, 2015.

[3] C. S. Lent and P. D. Tougaw, “A device architecture for computing with
quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557,
1997.

[4] M. Niemier, G. H. Bernstein, G. Csaba, A. Dingler, X. Hu, S. Kurtz,
S. Liu, J. Nahas, W. Porod, M. Siddiq et al., “Nanomagnet logic:
progress toward system-level integration,” Journal of Physics: Con-
densed Matter, vol. 23, no. 49, p. 493202, 2011.

[5] R. Cowburn and M. Welland, “Room temperature magnetic quantum
cellular automata,” Science, vol. 287, no. 5457, pp. 1466–1468, 2000.

[6] A. Imre, G. Csaba, L. Ji, A. Orlov, G. Bernstein, and W. Porod, “Majority
logic gate for magnetic quantum-dot cellular automata,” Science, vol.
311, no. 5758, pp. 205–208, 2006.

[7] T. R. Soares, J. G. N. Rahmeier, V. C. De Lima, L. Lascasas, L. G. C.
Melo, and O. P. V. Neto, “Nmlsim: a nanomagnetic logic (nml) circuit
designer and simulation tool,” Journal of Computational Electronics,
vol. 17, no. 3, pp. 1370–1381, 2018.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in Proceedings
of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[10] G. Fontes, P. A. R. Silva, J. A. M. Nacif, O. P. V. Neto, and R. Ferreira,
“Placement and routing by overlapping and merging qca gates,” in
Circuits and Systems (ISCAS), 2018 IEEE International Symposium on.
IEEE, 2018, pp. 1–5.

[11] M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler, “An exact
method for design exploration of quantum-dot cellular automata,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018. IEEE, 2018, pp. 503–508.

[12] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and
M. Graziano, “Topolinano: a cad tool for nano magnetic logic,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 7, pp. 1061–1074, 2017.

[13] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[15] F. S. Torres, P. A. Silva, G. Fontes, J. A. Nacif, R. S. Ferreira, O. P. V.
Neto, J. Chaves, and R. Drechsler, “Exploration of the synchronization
constraint in quantum-dot cellular automata,” in 2018 21st Euromicro
Conference on Digital System Design (DSD). IEEE, 2018, pp. 642–648.

[16] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,” in
Proceedings of the 51st Annual Design Automation Conference. ACM,
2014, pp. 1–6.

[17] L. Amarù, E. Testa, M. Couceiro, O. Zografos, G. De Micheli, and
M. Soeken, “Majority logic synthesis,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design. ACM, 2018, p. 79.

[18] A. Mishchenko et al., “Abc: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/alanmi/abc, p. 17,
2007.

[19] M. T. Niemier and P. M. Kogge, “Problems in designing with qcas: Lay-
out= timing,” International Journal of Circuit Theory and Applications,
vol. 29, no. 1, pp. 49–62, 2001.

[20] S. K. Lim, R. Ravichandran, and M. Niemier, “Partitioning and place-
ment for buildable qca circuits,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 1, no. 1, pp. 50–72, 2005.

[21] A. Bundy and L. Wallen, “Breadth-first search,” in Catalogue of Artifi-
cial Intelligence Tools. Springer, 1984, pp. 13–13.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[23] S. Yang, “Logic synthesis and optimization benchmarks,” Tech. Rep.,
Dec. 1989.

[24] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Circuits and Systems, 1989., IEEE
International Symposium on, May 1989, pp. 1929–1934 vol.3.


