
Improving Rule Based and Equivalent Decision
Simplifications for Bloat Control in Genetic
Programming Using a Dynamic Operator

Gustavo F.V. de Oliveira and Marcus H.S. Mendes

ICET, Universidade Federal de Viçosa, Florestal, Brazil
{gustavo.viegas,marcus.mendes}@ufv.br

Abstract. Bloat is a common issue regarding Genetic Programming
(GP), specially noted in Symbolic Regression (SR) problems. Due to
this, GP tends to generate a huge amount of ineffective code that could
be avoided or removed. Code editing is one of many approaches to
avoid bloat. The objective in this strategy is to mutate or remove sub-
trees which do not contribute to the final solution. Two known methods
of redundant code removal, the Rule Based Simplification (RBS) and
Equivalent Decision Simplification (EDS) are extended in a new opera-
tor presented in this paper, called Dynamic Operator with RBS and EDS
(DORE). This operator gives the algebraic simplification table used by
RBS the potential to learn from reductions performed by EDS. An ini-
tial benchmark highlighted how the RBS table can grow as much as 86%
with DORE, and reducing the time spent on simplification by 16.83%.
Experiments with the other three SR problems were performed showing
a considerable improvement on fitness of the generated programs, besides
a slight reduction in the population of the average tree size.

Keywords: Genetic Programming · Bloat Control · Code Editing.

1 Introduction

Symbolic Regression (SR) is one of the main applications and motivators to Ge-
netic Programming (GP), a method for automatically generate computer pro-
grams from a high level definition of a problem [15]. Since early 90ś, many
data-driven problems are modeled as SR problems [2], where no previous knowl-
edge or pre-processing input is required. GP is well suited for resolving such
problems since any algebraic function set can be effectively represented as trees
and implemented as computer programs for the problem domain [9].

Bloat - the uncontrolled and excessive growth of individuals without a pro-
portional gain of fitness - is a well-known issue and a field of study in GP. It
is specially noted in SR. The large amount of inefficient code causes excessive
consumption of computational resources, as well as many other practical issues
[16], hiding the problems real complexity and domain.

There are many approaches for avoiding uncontrolled code growth in tree-
based GP [5], some of which are presented as follows. The most simple and

2 G.F.V de Oliveira, M.H.S Mendes.

popular of them is implementing a Depth Limit [9], although is not a truly
effective approach, as it can induce growth in some scenarios. Parsimony Pressure
[9, 13] is another popular technique which adds a penalty term in fitness function
to punish large trees. Pseudo-hill Climbing [6] attempts to guarantee the fitness
to improve in population rejecting individuals least fit than its parents until
one is finally accepted. Code Editing approach mutates or removes redundant
sub-trees in individuals.

Regarding the code editing approach, Koza [9] proposed a simple method to
simplify (to convert a tree into a smaller, equivalent, tree) using grammar rewrite
rules, which further inspired the Rule Based Simplification (RBS) method [7, 20,
11]. RBS was extended with Equivalent Decision Simplification (EDS) [11], which
recursively compares all sub-trees in an individual for equivalency with a small
set of terminals.

This paper proposes the Dynamic Operator with RBS and EDS (DORE),
which improves a code editing bloat control algorithm using both RBS and EDS
to maximize its reduction potential without greater punishments in execution
time. The main feature of DORE is to dynamically learn redundant expressions
to be applied with RBS from EDS outputs. It also optimizes the access of RBS
rules using the any keyword in a hash-table implementation, as well as introduces
a warm-up stage to grow RBS rules before the evolutionary process begins.

The article is organized as follows: Section 2 provides a quick overview about
code editing operators; In Sect. 3 an improved strategy using the previous oper-
ators is proposed; Sect. 4 shows how RBS and EDS were implemented and the
technical resources utilized in benchmarks; Sect. 5 shows a performance com-
parison between the simplification operators, beside the empirical results and
discussion over three SR benchmark problems; and finally in Sect. 6, the con-
clusion is presented and the possibilities for further research.

2 Background

Redundancy is one of the key contributors to inefficient code growth. EDS [11]
was introduced to extend RBS as they complement each other. RBS removes
redundant subtrees by replacing a tree for a smaller equivalent one by applying
arithmetic rules such asX/1 → X and 0∗X → 0. These rules must be known and
provided before the evolutionary process starts, thus each rule must be explicitly
specified. Another limitation by RBS is that it’s rules must be specified exactly
like it would appear in an individual. For example, the rule X ∗0 → 0 would not
be sufficient to simplify a tree 0 ∗X unless the rule 0 ∗X → 0 is specified.

EDS extends RBS in a manner that it simplifies trees without previous knowl-
edge of algebraic rules. It can also remove redundancies that are only true in the
training domain. The simplification by EDS is made by evaluating each subtree
in an individual and comparing these subtrees with a set of small trees or ter-
minals which is usually the result of simplifications, such as X, 1 and 0. In a SR
problem, EDS is evaluated as follows [11]:

1. Determine a suitable set of simple trees Ssimple.

DORE - Dynamic Operator with RBS and EDS 3

2. Check all subtrees in the target for equivalence to a tree in Ssimple.

3. If some subtree is equivalent to a tree in Ssimple, and larger than it, replace
that subtree with the simple tree.

4. Repeat this procedure recursively until it fails.

Finding a suitable set of trees Ssimple for a problem is not an easy task.
Usually the set of terminals is a natural fit for Ssimple, but if it is already known
that some subtrees must appear in the final output, such as in trigonometrical
problems, they can be inserted in this set. However, the main issue of using EDS
as a single operator of bloat control is the computational performance. With
problems hard enough and individuals big enough, reducing a single generation
can take as long as multiple generational evaluations. This scenario is not un-
common in simple SR problems. If an evaluated individual with EDS contains
more subtrees than the population size, the evaluation function will be called
upon as much as in the generational evaluation.

2.1 Simplification with RBS and EDS

Fig. 1. Flow of simplification using RBS and EDS

4 G.F.V de Oliveira, M.H.S Mendes.

The flow of simplification using both RBS and EDS [11] is shown in Figure 1.
It can be expressed as follows:

1. Let the genotype tree of individual i be ti.
2. Apply RBS recursively to all nodes of ti, until there is no node to which

RBS can be applied, obtaining t′i.
3. Apply EDS to all nodes of t′i. If any node is translated, let the translated

tree be ti and go to (2). If there is no node to which EDS can be applied,
finish and let t′i be the final result.

Applying RBS before applying EDS is a good idea since it prevents EDS to
be used for simplifying already known rules. Also, RBS execution time is lower
than EDS, which will be explored further in this paper.

3 Proposed Improvements

The main idea of the improvements to the simplification with RBS and EDS
flow is to increase RBS rules table R dynamically as soon as new rules, or more
efficient ones, are discovered. This allows RBS to execute independently with
no large impacts in execution time. A more robust RBS operator also helps in
simplification itself, since any simplification made by EDS triggers new RBS
calls, as well as new EDS calls. If simplifications made by EDS occurred in the
first step of the simplification flow, then it would eliminate the need to reevaluate
subtrees that would only be reduced by EDS.

The first improvement proposed is to allow the simplification rules table R,
used by RBS, to have rules inserted in execution time. Each time a subtree is
simplified by RBS using the keyword ANY , which denotes any subtree, a new
rule with the original subtree as input is inserted in R. Afterwards, new calls to
RBS with the same subtree as input have O(1) access guaranteed in a hash-table
implementation.

Analogously, each simplification made with EDS creates a new rule in R table
with the learned simplification. Figure 2 shows how the previous flow is extended
with an additional step with for learning new RBS rules. This way, there is
no need to apply simplification with EDS to the same subtree in subsequent
individuals. Algorithm 1 shows an example algorithm to simplify a generation
using this improved simplification flow with RBS and EBS in a SR problem.

Another strategy adopted to grow even more the R table was the insertion
of a warm-up step before the evolutionary process begins. This warm-up step
consists of generating random trees in the training domain of a problem, with
random sizes, and then simplifying them with the improved flow. Each successful
reduction creates a new rule in the table, so the GP starts with a larger R table.

4 Methodology

All algorithms were implemented in Python 3.8.3 with the package DEAP [4]
(Distributed Evolutionary Algorithm in Python) in version 1.3.1. Parallelism was

DORE - Dynamic Operator with RBS and EDS 5

Fig. 2. Flow of simplification using RBS and EDS with the proposed improvements

used to evaluate fitness functions using the package Ray [12] in version 0.8.6.
The benchmarks were conducted in a 2018 MacBook Pro with 2.2 GHz 6-Core
Intel Core i7 and 16 GB 2400 MHz DDR4 memory.

4.1 Rule Based Simplification

The RBS simplification rules table R was implemented as a hash table. The
keyword ANY denotes any subtree and allows rules such ANY ∗ 0 → 0 to
be defined. In the original paper [11] this keyword was referenced as A and no
further details were provided on how it was implemented. In this paper, every
subtree evaluated by RBS consults the hash table directly and only if no rule
with the subtree is described the ANY rules are consulted. The access to the
table R has complexity O(1), except on the scenario where the ANY keyword
is included in the rule body, which makes the complexity O(N) where N is the
amount of rules in the table.

Reducing the amount of rules with ANY is a slight improvement to this
implementation as it maximizes the rate of O(1) accesses. Another way to attain
this goal is to define as many redundant rules as possible in R, for example
prioritizing the definition of rules 1 ∗ 0 → 0 and X ∗ 0 → 0 instead of ANY ∗

6 G.F.V de Oliveira, M.H.S Mendes.

Algorithm 1: Example of a generation simplification using improved
RBS and EDS flow
Data: P : generation population; R: RBS rules table

1 populationsimplified ← {}
2 foreach individual I in P do
3 foreach subtree Isubtree in I do
4 subtreesimpl, simplification ← call RBS with Isubtree
5 if simplification exists and not in R then add simplification to R ;
6 subtreesimpl, simplification ← call EDS with subtreesimpl

7 if simplification exists then
8 if simplification not in R then add simplification to R ;
9 go back to the beginning of current loop

10 end
11 Isubtree ← subtreesimpl

12 end
13 add I to populationsimplified

14 end
15 return populationsimplified

0 → 0. This task can be hard when there is no previous knowledge of such
simplifications in the domain of the problem.

4.2 Equivalent Decision Simplification

The subtrees set Ssimple for comparison for equivalence in EDS was implemented
as a simple list. Two subtrees is considered equivalent if all fitness values elapsed
from this subtree in the domain has relative error ϵ < 0.005. This threshold was
chosen after some tests and set to all benchmark problems in both compared
operators in this paper.

5 Experimental Results

This section is organized as follows: Section 5.1 shows a preliminary benchmark,
validating the performance improvement on each simplification method; It is pre-
sented in Sect. 5.2 the results for three artificial SR problems using the proposed
operator, comparing it with the original operator and baseline GP.

5.1 Simplification Methods Performance

A simple benchmark - using cos(2πx) as objective function - was ran 50 times
to compare the execution time of the five simplification strategies.

DORE - Dynamic Operator with RBS and EDS 7

Experimental Setting The experiment was the simplification of many inde-
pendent individuals in each reduction strategy: traditional versions of RBS and
EDS, RBS and EDS with dynamic rules allowed and RBS after the warm-up
step. More details of each strategy were discussed in Section 3. The fitness func-
tion was defined as the RMSE (Root Mean Squared Error), of 20 uniform points
in the interval [−π, π]. The function set used was {+. − .∗,÷}, where ÷ is the
protected division satisfying X/0 → 1. The terminal set is {X, 0, 1, π}. For each
execution, 200 trees are generated and then cloned in each step to avoid any
bias or propagation of simplifications. The reductions applied in one step are
not carried on to the next. The procedure, shown in Figure 3, is described as:

1. Reduction with RBS is applied to the 200 cloned individuals.

2. Reduction with EDS is applied to the 200 cloned individuals.

3. With the dynamic insertions in the rules table R allowed, reduction with
RBS is applied to the 200 cloned individuals.

4. With the dynamic insertions in the rules table R allowed, reduction with
EDS is applied to the 200 cloned individuals.

5. With the dynamic insertions in the rules table R allowed, a warm-up step is
done, and reduction with EDS is applied to the 200 cloned individuals.

Fig. 3. Flow for the simplification methods performance comparison benchmark

The 200 individuals are generated in each of 50 executions with the method
Ramped Half and Half and with depth limited to [5, 10]. The warm-up step
applied RBS and EDS sequentially to 200 trees generated with Grow method
and with depth limited to [1, 5]. The initial RBS rules table R is defined in
Table 1.

8 G.F.V de Oliveira, M.H.S Mendes.

ANY + 0→ ANY , ANY + 0→ ANY , ANY ∗ 1→ ANY ,
1 ∗ ANY → ANY , ANY ∗ 0→ 0, 0 ∗ ANY → 0,
ANY − ANY → 0, 1− 1→ 0, 0− 0→ 0, 0 + 0→ 0,

ANY − 0→ ANY , 1÷ 0→ 1, 0÷ 1→ 0, 0÷ 0→ 1, 1÷ 1→ 1,
ANY ÷ 0→ 1, 0÷ ANY → 0, ANY ÷ ANY → 1,

ANY ÷ 1→ ANY

Table 1. Initial simplification rules table used by RBS

Results and Discussion Table 2 shows the arithmetic mean of the 50 execu-
tions in each strategy. Dynamic RBS is 4.84% faster than the default RBS. The
RBS after the warm-up is shown to be 16.83% faster than the traditional RBS
and provided a 11.52% improvement to dynamic RBS before the warm-up.

Simplification Strategy RBS EDS Dynamic RBS Dynamic EDS Dynamic RBS after warm-up

Avg. Execution Time (s) 5.49 11.48 5.23 9.61 4.69

Table 2. Execution time comparison of the simplification operators

This benchmark indicates that not only a bigger R table can improve the
simplifications performance but also how much slower EDS is compared to RBS
as well. With no improvements, EDS is 2.09 times slower than RBS. Dynamic
EDS is 1.84 times slower than dynamic RBS before warm-up. Dynamic RBS
after the warm-up can be twice as fast as the dynamic EDS. The warm-up
increased the rules of table R, in average, from 19 entries to 135, to an around
86% improvement.

5.2 Symbolic Regression Problems

To validate the proposed improvements, 3 simple artificial SR problems were
tested. These benchmarks were extracted in [5], selected from [8, 10, 17–19]. Since
this paper presents a preliminary analysis of the operator, the benchmark prob-
lems are rather simple and harder problems will be explored in future works.
The problems are presented in Table 3.

Experimental Setting For each problem, 50 independent executions were
performed, in 3 different approaches: Base GP: with no code editing bloat
control operator, Baseline Operator: with the original simplification flow of
RBS and EDS as in [11], and DORE: using the proposed dynamic operator.

The function set to all benchmarks is set to F = {+,−, ∗,÷} where ÷ is the
protected division satisfying X/0 → 1. The terminal set to benchmarks 1 and

DORE - Dynamic Operator with RBS and EDS 9

Benchmark Objective Function Function Formula Domain - Training

1 f1(x1, x2, x3, x4, x5)
10

5+
∑5

i=1
(xi−3)2

50 random points. xi ∈ [0, 6]

2 f2(x1, x2)
(x1−3)4+(x2−3)3+(x2−3)

(x2−2)4+10
50 random points. xi ∈ [0, 6]

3 f3(x) 0.3 x sin(2πx) 40 random points. x ∈ [−2, 2]

Table 3. Artificial symbolic regression problems

2 is τ = {0, 1} and the decision variables. For benchmark 3, the terminal set is
τ = {0, 1, π} and the decision variable. To all benchmarks, the fitness function
is the RMSE of the training domain points.

Besides the traditional GP parameters, two new parameters were introduced
to fit the operator’s context in more computational resource expansive problems.
The first one is the percentage of population ρ which passes through the full
simplification flow. The algorithm is developed in such way that the best ρ%
individuals of the population are chosen each generation. The second additional
parameter is the remaining best γ percentage of the population that was not
previously chosen and passes through the reduction with RBS only. For example,
if the population size is 100, and the values ρ = 40% and γ = 20%, the 40 most
fit individuals would pass through the complete reduction flow and the remaining
best 20 trees would be reduced with RBS only.

These additional parameters are needed due the high computational cost
of the reductions that would make unfeasible the operation of all individuals
without a great impact in execution time. A large γ value does not have a
high impact on the execution time, since RBS reduction is simpler. Nonetheless,
the ρ value greatly impacts the total execution time. For the benchmarks these
parameters were chosen empirically, testing values big enough that would not
make the total GP execution time significantly slower than the Base GP.

A custom tournament selection, named as Partial Tournament, is used to
reduce the number of repeated individuals in the crossover. Being P the pop-
ulation, the Partial Tournament does |P | traditional K size tournaments, but
limits the repeated number of each individual to two. Then, if necessary, the
population is completed with individuals chosen at random up to |P |.

The GP settings used is presented in Table 4. The simplification rules used
in RBS are as described in Table 1. The simple subtrees set Ssimple used in EDS
is the terminal set τ for each problem. The warm-up step used in DORE runs
is defined as 200 full trees with depth limited in [1, 5] range.

Results and Discussion The median was preferred over the mean in this
section since it is less sensitive to outliers and the data is not guaranteed to
follow a normal distribution. In all of the data in any graph or table the median
of the 50 executions is shown.

10 G.F.V de Oliveira, M.H.S Mendes.

Number of runs 50

Generations per run 50

Initialisation Ramped half-and-half

Population size 200

Selection Non-elitist Partial Tournament Selection, with K = 5

Crossover One Point Crossover with 90% probability

Mutation Uniform subtree mutation with 5% probability

Tree depth limit Initial limit = 6; Subsequent limit = 17

Reduction threshold ρ 40%

Reduction threshold γ 60%

Table 4. GP settings used in symbolic regression benchmarks

It was first analyzed how the fitness behaved over generations. Figure 4 shows
how Base GP is worse than the others in all benchmarks. It also presents how
Base GP fitness curve tends to flatten in each benchmark. DORE has slightly
better results than the baseline operator. Figure 5 shows a fitness boxplot of
the best individuals in each generation.

Fig. 4. Best fitness versus generations, for all benchmark problems

The size of individuals is a crucial concern to have bloat-controlled GP ex-
ecutions, beside the fitness stagnation. A tree depth limit was used, so it was
not expected a completely uncontrolled growth on Base GP. As Figure 6 shows,
both operators had a much better size control on the population over generations
than Base GP. The difference between DORE and baseline operator was tiny,
with DORE having best results on the first two benchmarks.

Table 5 shows the validation and test domains used to analyze the best
individuals from each generation for all benchmark problems. It is presented in
Table 6 the median and median average deviation (MAD), as utilized in [1], of

DORE - Dynamic Operator with RBS and EDS 11

Fig. 5. Boxplots of the best of generation individuals, for all benchmark problems

Fig. 6. Tree median size versus generation

each set of points - training, validation, and test - using the RMSE as reference.
Table 7 shows the same metrics for the tree size of these best individuals. As the
data is not normally distributed, Table 6 and Table 7 also present the p-value
of the Mann-Whitney U-test [3] considering DORE x Base GP and DORE x
Baseline Operator datasets. The null hypothesis is that the distributions of both
datasets are equal. DORE performed better regarding tree size in all benchmark
problems, compared to the other two strategies. It also presented better results
in training error in all benchmarks. The benchmark 3 test error was worse using
an operator, which suggests that this kind of strategy is not well suited for more
complex problems even though the generated trees were smaller.

Benchmark Validation Domain Test Domain

1 100 random points xi ∈ [0, 6] 500 random points xi ∈ [0, 6]

2 100 random points xi ∈ [0, 6] 1156 points x1, x2 ∈ (−0, 25 : 0, 2 : 6, 35)

3 50 random points x ∈ [−2, 2] 2000 points x ∈ (−2 : 0, 001 : 2)

Table 5. Validation and test domain for best of run individuals analysis

12 G.F.V de Oliveira, M.H.S Mendes.

Method
Benchmark 1 Benchmark 2 Benchmark 3

Median MAD Median MAD Median MAD

D
O
R
E

Training Error 0.18 1.77e-02 1.16 1.71e-01 0.18 1.95e-02

Validation Error 0.22 2.46e-02 1.62 3.94e-01 0.26 4.58e-02

Test Error 0.21 1.48e-02 1.09 4.49e-01 0.67 4.39e-01
B
a
s
e

G
P

Training Error
(p-value)

0.19 4.03e-02 1.26 1.93e-01 0.20 1.79e-02

(1.42e-16) (1.49e-34) (5.80e-78)

Validation Error
(p-value)

0.21 2.55e-02 1.75 4.02e-01 0.24 1.96e-02

(1.28e-12) (1.73e-27) (5.23e-23)

Test Error
(p-value)

0.21 1.12e-02 1.59 8.89e-01 0.25 9.80e-03

(4.12e-11) (7.96e-09) (3.78e-96)

B
a
s
e
li
n
e

O
p
e
r
a
t
o
r

Training Error
(p-value)

0.20 2.38e-02 1.20 1.79e-01 0.19 2.10e-02

(2.09e-34) (1.19e-07) (1.10e-16)

Validation Error
(p-value)

0.22 2.25e-02 1.62 3.72e-01 0.25 2.85e-02

(5.81e-05) (1.16e-01) (3.94e-14)

Test Error
(p-value)

0.21 1.36e-02 1.24 7.44e-01 0.33 1.07e-01

(1.84e-04) (5.31e-02) (6.43e-32)

Table 6. Best individuals for generation performance, of all benchmark problems

Besides the best trees found for each generation, the best individuals of each
run were also analyzed. Figure 7 shows the mean training fitness against the
mean tree sizes. It is clear that DORE dominates the other strategies in all 3
benchmark problems regarding the fitness.

In benchmark 1, due to bloat, Base GP generates smaller but unfit individ-
uals. These individuals are, in average, from earlier generations than the ones
using code editing operators, see Figure 8. The boxplot shows how Base GP
converges earlier than the other two strategies. Thus, it is expected that trees
generated in later generations have better fitness but also a larger size. DORE
performed better than the other strategies in Benchmarks 2 and 3 and regarding

B
e
n
c
h
m

a
r
k

DORE Base GP Baseline Operator

Median of Avg.
Tree Size

MAD
Median of Avg.

Tree Size
MAD p-value

Median of Avg.
Tree Size

MAD p-value

1 94.55 6.11e+01 282.19 2.01e+02 5.61e-128 103.26 7.04e+01 1.37e-03

2 101.88 5.55e+01 196.58 1.21e+02 2.09e-87 119.84 7.96e+01 4.53e-10

3 203.80 1.34e+02 367.09 2.51e+02 8.29e-62 229.19 1.61e+02 1.30e-04

Table 7. Tree Size data of best individuals for generation, of all benchmark problems

DORE - Dynamic Operator with RBS and EDS 13

both size and fitness, as shown in Table 6 and Table 7. In all benchmarks it is
noted that the average size of the best individuals in DORE are better than the
ones with the baseline operator, see Table 7.

Fig. 7. Best of run average fitness against best of run average size

Fig. 8. Best of run generation boxplot

Another point of interest analyzed was the reductions made between baseline
operator and DORE. Each RBS and EDS simplification made was logged in each
run in these strategies. The tables and graphs related to reductions used the
arithmetic mean as an average value. Table 8 highlights how DORE increased
the number of unique simplifications made by RBS. This result was expected
since DORE tends to increase the reductions table used by RBS.

The average value of total reductions made by RBS and EDS is shown in
Table 9. These graphs present different scenarios. In benchmark 1, the total
reductions made by both RBS and EDS in DORE was greater than in baseline
operator. In benchmark 2, the reductions by RBS were greater in DORE but
lesser by EDS. Finally, in benchmark 3, the total reductions made by both
RBS and EDS was greater in the baseline operator. These different scenarios

14 G.F.V de Oliveira, M.H.S Mendes.

Method Benchmark 1 Benchmark 2 Benchmark 3

Baseline Operator 866.34 756.1 1735.98

DORE 1667.04 1330.9 2066.62

Table 8. Average value of unique RBS simplifications performed

Method
Avg. Total RBS simplifications Avg. Total EDS simplifications

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 1 Benchmark 2 Benchmark 3

Baseline Op. 8060.32 12569.58 67622.52 104.8 165.92 680.82

DORE 16100.26 23830.96 39455.28 145.28 137.94 214.92

Table 9. Average total simplifications made by RBS and EDS

are directly related to the nature of each benchmark problem. Also, although
the RBS reduction table in DORE had more entries than the baseline table,
each simplification called by EDS triggered another recursive RBS simplification
attempt on each subtree in the individual. Thus, in problems where the number
of simplifications by EDS is high - and with an increased average size reduction
- the number of reductions by RBS tends to be higher as well.

Even though each benchmark presented a different reduction scenario, a pat-
tern in the ratio between reductions by RBS and reductions by EDS could be
noted, as is shown in Figure 9. In all benchmark problems, except the propor-
tion, the total amount of RBS reductions relative to the total amount of EDS
reductions is bigger. It can also be noted that this ratio is greater in DORE
than in the baseline operator, which is exactly the main goal of the proposed
improvements.

Fig. 9. Average ratio of simplifications made

The impact of the dynamically learned rules was analyzed and shown in
Figure 10. The graphs are histograms of the total amount of reductions made by
RBS in each subtree size reduction percentage interval. The values highlighted
in purple are from rules that could only be learned with DORE improvements.
The average size reduction of these dynamically learned rules in each benchmark
were 86.01%, 88.01% and 85.40%, respectively, compared to the average size

DORE - Dynamic Operator with RBS and EDS 15

reduction of 59.38%, 55.98% and 52.74% from the predefined rules. DORE not
only provided more reductions to be applied but also better ones.

Fig. 10. RBS simplification frequency against size reduction percentage

Finally the execution time was analyzed, an important point of interest in
this work as DORE execution time should be close to the baseline operator.
Average execution time - using the arithmetic mean - for all benchmark prob-
lems is shown in Table 10. Since the values of parameters ρ and γ were defined
empirically to make execution time between baseline operator and DORE close,
the values presented are expected. However, the difference between Base GP and
executions with operators is notable. Using RBS and EDS operators as a single
bloat control method seems to be not adequate in hard or complex problems as
the execution time tends to increase even more due to all the fitness function
evaluation performed recursively in EDS step of the simplification flow.

Benchmark
Average Execution Time (s)

Base GP Baseline Operator DORE

1 180.36 292.23 321.12

2 167.31 276.08 277.59

3 206.10 585.60 514.68

Table 10. Average total execution time (in seconds) of each strategy, for all benchmark
problems

6 Conclusion and Future Work

This paper presented improvements to a simplification flow introduced in [11]
to make it more reasonable to be applied in complex problems. Besides a meta-
learning reduction, two parameters were introduced to optimize the number of

16 G.F.V de Oliveira, M.H.S Mendes.

trees to be reduced by RBS and EDS in harder problems than the one presented
in the original work, without greater impact in execution time.

The resulting operator was able to improve the execution time performance
of reduction by RBS, as well as the relative frequency of this reduction in the
simplification flow, even with a limit of trees applied. A greater percentage of
the population could pass through reduction by RBS with no significant penalty
in execution time.

The results of the three artificial SR problems benchmark highlighted how
DORE improved the fitness and slightly the tree size in the population dur-
ing the evolutionary process. The best individuals in these experimental runs
had significantly better results in both fitness and tree size using the dynamic
operator.

It is noted that DORE is helpful to control bloat in GP but could be chal-
lenging to adopt in more complex problems due the computational burden. This
issue should be addressed in future research. Probably tuning the parameters ρ
and γ may be needed as well as limiting the size of the subtrees in Ssimple.

Future work could measure the limits of the list Ssimple and a robust strategy
to handle random ephemeral constants, which was not explored in this paper.
Parallelization of the reductions could improve the operator performance, mak-
ing it more viable, although is not a trivial problem as the rule table is constantly
updated by each EDS reduction performed. It would also be interesting to apply
this operator with other bloat control methods, such as a equalization operator
[14], using it as a tool to optimize a small set of individuals in a population.

References

1. Castelli, M., Manzoni, L., Mariot, L., Saletta, M.: Extending Local Search
in Geometric Semantic Genetic Programming, pp. 775–787 (08 2019).
https://doi.org/10.1007/978-3-030-30241-2 64

2. Chen, C., Luo, C., Jiang, Z.: Block building programming for
symbolic regression. Neurocomputing 275, 1973–1980 (2018).
https://doi.org/https://doi.org/10.1016/j.neucom.2017.10.047

3. Fay, M.P., Proschan, M.A.: Wilcoxon-mann-whitney or t-test? on assumptions for
hypothesis tests and multiple interpretations of decision rules. Statistics surveys
4, 1 (2010)

4. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13,
2171–2175 (jul 2012)

5. Haeri, M.A., Ebadzadeh, M.M., Folino, G.: Statistical genetic programming for
symbolic regression. Applied Soft Computing 60, 447–469 (2017)

6. Hagiwara, M.: Pseudo-hill climbing genetic algorithm (phga) for function
optimization. In: Proceedings of 1993 International Conference on Neu-
ral Networks (IJCNN-93-Nagoya, Japan). vol. 1, pp. 713–716 vol.1 (1993).
https://doi.org/10.1109/IJCNN.1993.714013

7. Hooper, D.C., Flann, N.S.: Improving the accuracy and robustness of genetic pro-
gramming through expression simplification. In: Proceedings of the 1st Annual
Conference on Genetic Programming. p. 428. MIT Press, Cambridge, MA, USA
(1996)

DORE - Dynamic Operator with RBS and EDS 17

8. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: European Conference on Genetic Programming. pp. 70–82. Springer (2003)

9. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers
by means of natural selection, vol. 1. MIT press (1992)

10. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming
needs better benchmarks. In: Proceedings of the 14th annual conference on Genetic
and evolutionary computation. pp. 791–798 (2012)

11. Mori, N., McKay, R., Hoai, N., Essam, D., Takeuchi, S.: A new method for simplify-
ing algebraic expressions in genetic programming called equivalent decision simpli-
fication. vol. 13, pp. 237–244 (06 2009). https://doi.org/101̇0079783642024818 24

12. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Paul, W.,
Jordan, M.I., Stoica, I.: Ray: A distributed framework for emerging AI applications.
CoRR (2017), http://arxiv.org/abs/1712.05889

13. Poli, R., McPhee, N.F.: Parsimony pressure made easy: Solving the problem of
bloat in gp. In: Theory and Principled Methods for the Design of Metaheuristics,
pp. 181–204. Springer (2014)

14. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13 (06 2012). https://doi.org/10.1007/s10710-011-9150-5

15. Sivanandam, S., Deepa, S.: Genetic Programming, pp. 131–163. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73190-
0 6, https://doi.org/10.1007/978-3-540-73190-0 6

16. Trujillo, L., Muñoz, L., Galván-López, E., Silva, S.: Neat genetic pro-
gramming: Controlling bloat naturally. Information Sciences 333 (11 2015).
https://doi.org/10.1016/j.ins.2015.11.010

17. Uy, N.Q., Hien, N.T., Hoai, N.X., O’Neill, M.: Improving the generalisation ability
of genetic programming with semantic similarity based crossover. In: European
Conference on Genetic Programming. pp. 184–195. Springer (2010)

18. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic re-
gression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

19. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Transactions on Evolutionary Computation 13(2), 333–349
(2008)

20. Wong, P., Zhang, M.: Algebraic simplification of gp programs during evolution. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computa-
tion. p. 927–934. GECCO ’06, Association for Computing Machinery, New York,
NY, USA (2006). https://doi.org/10.1145/1143997.1144156

