
SENDAS: Scalable ENrichment for mobility DAta Sets
Henrique S. Santana1, Fabrício A. Silva1

1Universidade Federal de Viçosa, campus Florestal – Florestal, MG – Brasil

{henrique.s.santana,fabricio.asilva}@ufv.br

Abstract. Recent years of technological advancement and popularization has
grown the availability of mobility data, collected from different sources. Ana-
lyzing such data is an active research and industrial development field, with a
diverse range of applications. However, trajectory data has also been following
the Big Data trend, and currently existing tools lack of scalability. To cover this
gap, we introduce Sendas – Scalable ENrichment for mobility DAta Sets –, a
new Scala library built around the Apache Spark framework, enabling parallel
and distributed execution for mobility analysis techniques. We present defini-
tions that extend state-of-the-art notions of trajectory naming, flow calculation
and mobility motif identification, and also conduct comparative performance
evaluation, finding running time improvements of 4 to 6 times when compared
to non-parallel execution.

1. Introduction
Human mobility is a broad research field, comprehending multiple disciplines and being
of interest to diverse applications, like urban planning, population migration analysis, en-
vironmental impact studies, recommendation systems, among others. Historical mobility
data have been used by researchers and industry to understand and characterize human
mobility.

While in the past detailed mobility data – also known as trajectory data – were
scarce, with recent years of technological advancement and popularization for various
purposes, its availability has been growing in an unprecedented scale and granularity.
The use of Call Detail Records (CDRs), GPS data and social network geotagged posts are
examples of data collection means that contributed to this change [Barbosa et al., 2018].
However, such data also poses challenges due to its big volume and heterogeneity.

Several tools already exist, usually as Python or R libraries, to address the extrac-
tion of primitive or derived trajectory metrics [Graser, 2019], trajectory data processing,
plotting and also other specific related features. However, despite the heterogeneous as-
pect of trajectories is handled by those libraries, to the best of our knowledge, there is
currently no practical tool available to deal with mobility data big volume as well, which
is a crucial feature to its industry adoption.

Thus, in this work we introduce Sendas – Scalable ENrichment for mobility DAta
Sets –, a Scala library which closes the aforementioned gaps, and also aims to provide
ready implementations of state-of-the-art semantic enrichment algorithms and techniques
for mobility analysis. Sendas is built on top of Apache Spark framework [Zaharia et al.,
2012] and uses Apache Sedona, previously known as GeoSpark [Yu et al., 2019], to aid
with geospatial queries.

The main goals of Sendas proposal can be summarized as:

• Provide scalable implementations of trajectory analysis and transformation, cov-
ering a common gap in existing tools;

• Specify an easily extensible and adaptable library for research and development
application;

• Extend mobility flow definition to include temporal analysis;
• Present a more restricted definition for mobility motifs, enabling more efficient

implementations.

This paper is organized as follows: Section 2 discusses related works. Section 3
presents key concepts to understanding the proposal. Implementation details and project
design choices are described in Section 4. Section 5 shows an experimental and compara-
tive evaluation of Sendas. Finally, concluding remarks are given in Section 6, along with
future directions and challenges.

2. Related Work

Currently existing tools for handling mobility data include mainly Python and R libraries,
which are popular programming languages in data science. We can highlight three li-
braries that most influenced Sendas development and research.

scikit-mobility [Pappalardo et al., 2021] is a Python library that provides a wide
range of features, including trajectory metrics, clustering, filtering, plotting and aggrega-
tion into collective flow data, as well as generating synthetic mobility traces and privacy
risk assessment. It is based on other popular Python libraries, primarily pandas [McKin-
ney et al., 2010] and GeoPandas [Jordahl et al., 2019].

MovingPandas [Graser, 2019] is another Python library that uses GeoPandas, but
with a greater focus on calculating trajectory metrics. It also supports visualization and in-
tegration with desktop QGIS applications. And finally trajectories [Moradi et al., 2018] is
an R library that likewise focuses on metrics extraction and plotting, while also providing
trajectories simulation and model fitting.

All of those libraries share a common problem: scalability. GeoPandas data struc-
tures, for instance, do not support parallel or distributed computing natively. On the
other hand, Apache Spark [Zaharia et al., 2012] framework provides data abstractions
that allows a programmer to easily parallelize their tasks with high-level transformations.
Apache Sedona, formerly known as GeoSpark [Yu et al., 2019], extends Spark by intro-
ducing geometrical data types into Spark, and provides efficient operations like spatial
joins through partitioning and indexing algorithms.

Both Spark and Sedona are implemented in Scala, an objected-oriented and func-
tional programming language that runs on JVM (Java Virtual Machine), bringing type
safety, expressiveness and performance to code. Although both provide API bindings to
work with Python and R, this can become a computational overhead, as it has been shown
that Spark code run on Scala can be about 10 times faster than running on Python [Gupta
and Kumari, 2020; Ji and Kwon, 2020]. By choosing to develop our library in Scala, we
aim for efficiency gains and consider this an opportunity to encourage the use of Scala in
the mobility data analysis field.

3. Definitions
Not only mobility data can be represented in multiple ways, but there is a lack of standard-
ized terminology among the field [Graser, 2019]. With current data collection techniques,
it is possible to obtain records of individual moving objects – people, animals, vehicles.
So, we take this as the base definition for trajectories: a chronologically ordered sequence
of points in space, belonging to a specific object [Zheng et al., 2014; Pappalardo et al.,
2021]. More generally, we can use any spatial representation, and, since this definition
relies on a single temporal information, we call it the instant-based trajectory.

Definition 1 The instant-based trajectory of a moving object o is defined as a sequence
of tuples ITo = {(t1, s1), ..., (tn, sn)}, where si is a spatial object, ti is a timestamp, and
ti < tj if, and only if, i < j.

However, in order to capture other aspects of mobility semantics, and for conve-
nience, two other trajectory definitions are adopted. One of them comes from the concept
of stay points [Montoliu et al., 2013], in which each data record represents permanence
of a moving object in a location for a given time.

Definition 2 The stay-based trajectory of a moving object o is defined as a sequence of
tuples STo = {(ts1, te1, s1), ..., (tsn, ten, sn)}, where si is a spatial object, tsi and tei are
respectively the start and end timestamps of permanence in si, tsi < tei, and tei < tsj if,
and only if, i < j.

The other definition is, as Graser [2019] states, a line-based approach. In this
context, we name data records as moves, since each of then represents movement of a
moving object from an origin to a destination.

Definition 3 The move-based trajectory of a moving object o is defined as a sequence of
tuples MTo = {(to1, td1, so1, sd1), ..., (ton, tdn, son, sdn)}, where soi and sdi are spa-
tial objects respectively denoting origin and destination of the move, toi is the departure
timestamp from soi, tdi is the arrival timestamp at sdi, toi < tdi, and tdi < toj if, and
only if, i < j.

These definitions denote complementary ways to represent trajectories, and are
thus called trajectory views, being used in the library as shown in Section 4. In every
definition, each tuple constituting a trajectory is called a trajectory record.

Usually, mobility data is expressed in terms of points on a plane or on the Earth.
Nonetheless, it is also useful to abstract each individual point into an aggregated notion
of a region. E.g., instead of saying a person went from a given latitude and longitude
to another, we could say they went from city A to city B. For that purpose, we use the
concept of tessellations, which is the partitioning of space into geometries or tiles [Lee
et al., 2000].

Definition 4 A tessellation is a bijective function T : Θ → Γ, where Θ is a set of tile
identifiers and Γ is a set of geometries. ∀g ∈ Γ, g supports containment operation with
points p ∈ Rn, n ≥ 1.

Tessellations can be feature-primary, dividing space according to real world char-
acteristics, e.g. districts of a city or country borders. They can also be space-primary,

Table 1. Trajectory Record Types

Point Tile

Instant
ti ti

Stay
[tsi, tei] [tsi, tei]

Move toi tdi toi tdi

dividing space according to a function or an algorithm, independently from known fea-
tures, e.g. Uber H3 [Brodsky, 2018] system. There are other ways to classify tessellations,
but they are all treated equally under an interface in the library.

Thus, depending on what kind of spatial objects are used in a trajectory, we can
call it a point-based trajectory or a tile-based trajectory, as in Definitions 5 and 6, respec-
tively. In order to fully characterize a set of trajectories, both the spatial representation
and trajectory view should be specified, as shown in Table 1.

Definition 5 A point-based trajectory is a trajectory whose spatial objects are points
pi ∈ Rn.

Definition 6 Given a tessellation T : Θ → Γ, a tile-based trajectory is a trajectory
whose spatial objects are tile identifiers θi ∈ Θ.

Among important aggregated metrics for mobility analysis are origin-destination
matrices, or flows, which measure the number of movements between pairs of regions.
For it is often useful to analyze flow along time, we extend the notion of flow to include a
temporal dimension, splitting flow into inflow and outflow, as stated in Definition 7.

Definition 7 Flow is defined as a set of matrices Φ, ∀Ft ∈ Φ, Ft is an O×D matrix, and
Ft,OD = (f out

t,od, f
in
t,od), where f out

t,od is the number of moving objects departing from region
o at time slot t towards region d, f in

t,od is the number of moving objects arriving at region
d at time slot t, coming from region o, and O,D are the number of distinct origin and
destination regions, respectively.

Finally, in order to capture repeating patterns of individual moving objects, we use
the concept of mobility motifs [Schneider et al., 2013]. In analogy to complex networks,
if movements are organized into a temporal network, – i.e., a temporal graph – a mobility
motif is a recurring subnetwork that represents the visited locations of a moving object
along a time slot. Since no moving object can ever be in two places simultaneously,
it is reasonable to assume a strict order among the temporal edges, unlike other works
related to temporal motifs which address possibly simultaneous events [Lei et al., 2020;
Sun et al., 2019; Kovanen et al., 2011].

Definition 8 The motif Mot of a moving object o during time slot t = (tstart, tend) is a
temporal graph Mot = (V,E), where V is the set of visited regions and E is the set of
strictly ordered temporal edges E = {(ui, vi, ti)|ui, vi ∈ V, tstart ≤ ti < tend}.

4. Sendas

In order to provide an easily extensible and maintainable library, the core functionality of
Sendas is built around the multiple definitions of trajectories, whose classes and traits 1

are defined at the root level of the package. The other features are organized into the
following packages:

• tessellation: definition of available tessellations;
• analysis: trajectory metrics extraction;
• processing: trajectory clustering, transformation, etc.
• flow: aggregation of movements into flow matrices;
• motif: detection and labeling of mobility motifs;

Figure 1 provides an overview of Sendas currently available main features. Data
can be loaded from various sources and also exported to different formats through Spark
DataFrame abstraction. Internally, Sendas TrajDataFrame undergoes transformations
such as StayDetection (Section 4.3) and Tessellation (Section 4.2), and is then passed
to Flow (Section 4.4) or MotifLabeling (Section 4.5) features.

Figure 1. Overview of Sendas features and example data flow steps.

4.1. TrajDataFrame

At the library root package, Sendas core class can be found, TrajDataFrame. This class
is a wrapper around Spark’s high-level SQL API, the DataFrame, thus consequently ben-
efiting from the various data input and output formats it provides. To use any Sendas
feature, data has to be first loaded into a DataFrame, which has tabular format where each
column is an attribute and each row is an observation. A TrajDataFrame is then built, as
long as the provided columns conform to a specific trajectory representation.

As Figure 2 shows, to specify a trajectory representation, users must choose a
spatial representation – expressed in trait SpatialRep – and a trajectory view – trait

1In Scala, a trait is almost the equivalent of a Java interface. Classes and objects can extend traits, but
traits cannot be instantiated. A notable difference from Java interfaces is that traits can declare attributes as
well as methods.

Figure 2. Class diagram related to TrajDataFrame class.

TrajView. By exposing their types through TrajDataFrame type parameters2 and tak-
ing advantage of Scala type system, we allow features to specify which representation is
handled as input by their functions and methods, and to also state explicitly the intended
output representation.

The concrete types for TrajView map exactly to Definitions 1, 2 and 3, respec-
tively: InstantView, StayView and MoveView. As for spatial representations, the point
representation, as in Definition 5, is mapped to another trait, PointRep, which define
a set of methods necessary to work with point-based trajectories, e.g., a distance func-
tion between two points. Currently available concrete types for PointRep include only
GeoRep, which refers to the de facto standard geographical coordinate reference sys-
tem ESPG:4326, expressing real world latitude and longitude in ranges [−90, 90] and
[−180, 180], respectively. However, as long as new coordinate systems implemented in
future releases extend the PointRep trait, Sendas point related features will work prop-
erly. The other concrete SpatialRep type is TileRep (Definition 6), which needs an
instance of Tessellation to be used.

4.2. Tessellation

The main responsibility of Sendas tessellations is to assign tile identifiers to points and
can also be implemented in multiple ways, as long as they implement the Tessellation
trait. This feature must be implemented in the toTile method, as shown in Figure 3.

By not requiring Tessellations to explicitly store all of their geometries be-
forehand, space-primary tessellations that can calculate a tile identifier solely from point
coordinates – e.g. H3 or z-order functions – will generate a corresponding polygon or
shape only if requested by a call to the tiles method, and only for tile identifiers listed

2Type parameters in Scala are denoted by square brackets, as seen on the class diagrams.

Figure 3. Class diagram related to Tessellation trait.

in its input parameter.

H3Tessellation is an example of an implemented space-primary tessellation, us-
ing Uber H3 indexing library [Brodsky, 2018]. The other currently available implemen-
tation is the generic UserDefinedTessellation, whose tile identifiers and geometries
are directly specified in its attribute tilesDF. In this class, points are associated with tiles
using Apache Sedona spatial join query, sped up by efficient spatial indexing structures
like R-trees and quadtrees.

4.3. Trajectory analysis and processing

Exploratory data analysis, followed by filtering, clustering and applying transformations
on data are usual practices in data science in general, and mobility analysis is no excep-
tion. Thus, Sendas provides functions for introductory extraction of trajectory deriva-
tives [Graser, 2019] (Table 2), and a set of algorithms necessary to the main use cases
presented in this paper.

Table 2. Metrics available in the analysis package.
Method Description

duration
Calculates the time taken to move between consecutive trajectory
points.

distance Calculates the distance between consecutive trajectory points.

velocity
Calculates the average speed between consecutive trajectory points,
along with the angle (bearing) formed by the points.

gyradius
Aggregates every point of each moving object to calculate its radius of
gyration.

Among the transformation functions, it is important to highlight two clustering
techniques. The first is an algorithm that groups multiple points from point-instant tra-
jectories into point-stay trajectories, based on the work of Montoliu et al. [2013], and
available through the StayDetection class. The other technique is a simple combination
of tile-stay trajectories, which groups consecutive stays on the same tile identifier. Given
two consecutive records, belonging to the same moving object o, ri = (o, tsi, tei, θi) and
rj = (o, tsj, tej, θj), if θi = θj , ri and rj combined into ri+j = (o, tsi, tej, θ). This
transformation is particularly useful to avoid self loops in flow matrices or motifs.

4.4. FlowDataFrame

Aiming to capture aggregated flow measures, Sendas provides the FlowDataFrame class,
which is built by a constructor method present in the Flow object. As shown in Fig-
ure 4, by aggregating tile-move trajectories, first an ODFlowDataFrame instance is created,
which can later be transformed to a TileFlowDataFrame if needed. The former maps to
Definition 7, while the latter is an even more summarized view of flow data, listing out-
flow and inflow for a single region in each record, respectively meaning the total number
of moving objects departing from, and arriving at the same region.

Figure 4. Class diagram related to Flow.

Nonetheless, both FlowDataFrame subclasses are capable of extending the notion
of flow with a temporal dimension by having an instance of TimeDivision (Figure 5).
It is not mandatory to group movement counts into different time slots, in which case
NoTimeDivision is used, and the whole data set is considered as a single time slot and
flow calculation is the same as other libraries provide. However, if an application needs
to calculate flow separately, e.g., by day or by week, an OffsetTimeDivision is used.

Along with discretizing time into slots, a TimeDivision can also have any num-
ber of instances of TimeCategory. Each TimeCategory contains a function that assigns
semantic labels to timestamps, which are later used by FlowDataFrame to not only group
flow by time slots, but also by each different time category label. Continuing the previous
daily time division example, an application could be interested in distinguishing work-
days from weekend days, or separating flows that happened during morning, afternoon
and night.

The TimeCategory function can be arbitrary, but TimeSpan classes can be used
and chained together to define that function more conveniently: DiscreteSpan assigns
the given label to specific values, RangeSpan assigns the given label to values inside a
range, and DefaultSpan assigns the given label if no other condition is met.

4.5. MotifLabeling

The extraction of mobility motifs is also an aggregated feature from tile-move trajectories,
but relative to each individual moving object. It is provided by Sendas through a single
function contained in the MotifLabeling object. Besides a TrajDataFrame, it expects
the same window and offset parameters used by TimeDivision, in order to separate
trajectories into time slots.

Figure 5. Class diagram related to TimeDivision trait.

While the definition of temporal motifs given by the works of Kovanen et al.
[2011], Sun et al. [2019] and Lei et al. [2020] applies to ours, it is a more general approach
which handles the case of simultaneous temporal edges. Also, following the three-steps
motif identification process proposed in [Kovanen et al., 2011] – (1) find all maximal con-
nected subgraphs E∗

max, (2) find all valid subgraphs E∗ ⊆ E∗
max and (3) identify the motif

corresponding to E∗ –, it is possible to simplify those steps by using the more restricted
mobility motif Definition 8 and making certain assumptions.

The first step, as aforementioned, is accomplished by dividing movements into
time slots. As for the second step, since we are concerned with capturing the mobility
pattern of each object, and not patterns on the whole network formed by all movements, it
is enough to assume that the entire sequence of moves performed by that object comprises
its motif, for a given time slot. Finally, in order to count how many times each motif was
detected for each object, or appeared in the entire data set, it is necessary to compare those
graphs and check if they have the same structure, i.e., if they are isomorphic.

General graph isomorphism is an NP-complete problem, but if restrictions are
imposed in their structure, polynomial algorithms can be devised [Jiang and Bunke, 1998].
Using our definition, we propose an O(E logE) technique to assign canonical labels to
motifs and use those labels to identify isomorphic motifs, where E is the number of motif
edges.

Figure 6. Examples of mobility motifs and their assigned canonical labels.

As seen on Figure 6, each vertex corresponds to a region visited by the examined
moving object, and the temporal order of edges is indicated by their labels. Let ET =
{ei|ei = (ui, vi)} be the temporally ordered sequence of edges of a temporal graph GT =
(V,E), and let Σ = {σ0, σ1, ...|∀σi, σj, i < j → σi < σj} be a set of unique labels,
we can define a bijective function σ : V → Σ that maps each vertex of a temporal
graph to a unique label from Σ, according to the order of their first appearance in ET ,
i.e., the first vertex in an edge of ET is mapped to σ0, the second is mapped to σ1, and
so on. Formally, let e0 = (u0, v0) be the first edge of ET , then σ(u0) = σ0. Also
∀e = (u, v) ∈ ET , σ(u) ≤ σ(v), u = v ↔ σ(u) = σ(v) and ∀ei, ej ∈ ET , i < j →
σ(vi) ≤ σ(uj), vi = uj ↔ σ(vi) = σ(uj).

The canonical label of a graph G is then defined as a list of tuples τ ∗(G) =
{(σ(u0), σ(v0)), ..., (σ(uE), σ(vE))} mapping each ordered edge of ET with σ, but a proof
is necessary to ensure τ ∗(G) is indeed a canonical label. Considering that if, and only if,
temporal graphs GA = (VA, EA) and GB = (VB, EB) are isomorphic, there exists a func-
tion φ : EA → EB, we must show by transitivity that ∃φ : EA → EB ↔ τ ∗(GA) =
τ ∗(GB), i.e, there exists a bijective function φ that maps every edge of GA to an edge in
GB preserving their temporal order if, and only if, their canonical labels are equal.

First, we prove that if such function φ exists, then the canonical labels given by
τ ∗ must be equal. The first condition of φ states that every edge in EA must be uniquely
mapped to an edge in EB, which means that |τ ∗(GA)| = |τ ∗(GB)| . The second condition
states that the temporal order of the edges is preserved after the mapping. Thus, the first
vertex that appears on ET,A is mapped to the same label in Σ as the first vertex that appears
in ET,B, and the same applies to every subsequent vertices. Hence, τ ∗(GA) = τ ∗(GB).

To aid in the second half of the proof, we can define a bijective function τ : E →
Σ× Σ× N that maps each edge of the graph G to a tuple τ(e) = (σ(u), σ(v), i), where i
is the index of e in the sequence ET or τ ∗(G).

Next, we prove that if τ ∗(GA) = τ ∗(GB), then it is possible to construct a bijective
function φ that meets the temporal isomorphism criteria. Such function can be simply
defined as φ(eA) = τ ′B(τA(eA)), in which τA : EA → Σ × Σ × N maps edges in EA to
their vertices labels and their order in ET,A, and τ ′B : Σ× Σ× N → EB is the inverse of
τB and maps vertex labels and order back into edges of EB. Having τ ∗ defined for both
graphs implies that τA and τ ′B can be defined. Since τ ∗(GA) = τ ∗(GB), their length must
also be equal, which means every edge in EA can be mapped to an edge in EB. Also,
since the order is also the same and is unambiguous, it is guaranteed that for any two
edges eAi and eAj in EA, if eAi appears before eAj in the canonical label, there exists two
corresponding edges eBi and eBj in EB given by φ that also respect that order. Hence, the
proof is complete.

As seen in Figure 6, the chosen Σ set is the standard upper case alphabet letters in
ASCII. The canonical label τ ∗(G) is transformed to a string by simply concatenating each
σ(u), with the following rule. For each consecutive (σ(ui), σ(vi)), (σ(ui+1), σ(vi+1)) ∈
τ ∗(G), if σ(vi) = σ(ui+1), σ(ui+1) is omitted, or else, a break character is inserted before
it – a colon character was arbitrarily chosen as the break –, as shown by the AB:CD motif.
Finding τ ∗(G) and transforming it to a string takes linear time, i.e., it is O(E), but the
edges must be previously sorted, which is commonly an O(E logE) operation, thus the

total complexity is O(E logE).

The final output for this feature consists of every moving object identifier asso-
ciated with each time slot and their corresponding motif canonical label. It is worth
mentioning that all data preparation steps, as studied in [Schneider et al., 2013], should
be done outside this module, e.g. through the stay detection algorithm.

After outlining these definitions and proving our proposal, we further improved
state-of-the-art motif labeling techniques in temporal graphs by limiting the scope of the
problem to the characteristics of mobility data. Such findings contribute to research and
applications in movement pattern analysis by providing an explicit model to identify mo-
bility motifs, independently of extraction methods.

5. Performance Evaluation
In order to assess the scalability and efficiency of Sendas, two use case scenarios were
proposed to illustrate its currently main implemented features: flow calculation and motif
labeling. Then, comparative experiments were conducted to evaluate how the amount
of parallel execution threads used by Spark can leverage performance. In the case of
flow calculation, since scikit-mobility provides this same feature, its execution time on
the same dataset is compared to our proposal.

The input dataset is the record of mobile users along the month of November of
2019, offered by a partner company. It is comprised of 49,790 unique users and 8,528,058
rows, as point-instant trajectories, using conventional latitude and longitude coordinates.

As both evaluated features expect tile-move trajectories as input, the first step to
use them is to aggregate the data set into point-stay trajectories. Using the StayDetection
algorithm results in 1,251,003 stay points, as can be viewed in Figure 7. Next, we use an
H3Tessellation to turn point-stays into tile-stays. To give a fair comparison between
Sendas and scikit-mobility flow calculation, the resulting H3 tile identifiers were con-
verted to their respective polygons and reused as input to UserDefinedTessellation.
This way, both libraries would need to perform spatial join queries to assign tile identi-
fiers to points.

Figure 7. Distribution of resulting stay points.

Figure 8. Running time for flow calculation in minutes.

With the appropriate data in hand, we perform the performance evaluation. All
tests were performed in a single computer, with the following specifications: 2 Intel Xeon
CPU X5650 (12M Cache, 2.66 GHz, 6.40 GT/s Intel QPI, 6 cores, 12 threads) proces-
sors, 24 GB DDR3 1333 MHz RAM and 512 GB of storage. For each test instance, the
corresponding relevant code section was run 33 times and the total running time measure
was recorded, in order to avoid running time disparities due to other processes running in
the same machine.

First, for flow calculation, we applied no time division or categorization, to align
with the provided features of scikit-mobility and ensure both libraries would produce the
same output. Code sections whose running time was recorded include loading input tra-
jectory and tessellation data into memory, using a spatial join query to assign tile identi-
fiers to points, counting the number of movements between pairs of regions, and finally
writing the results to CSV files. A total of 246,956 unique origin-destination pairs were
calculated.

Figure 8 shows tests results, first for scikit-mobility (labeled as skmob), and then
for Sendas, with labels from 1 to 16 indicating the number of execution threads used. Even
when a single thread is used, Sendas performs better, taking up to 8 minutes to complete,
while scikit-mobility took about 15 minutes, an almost two-fold difference. This could
indicate the performance gains of using Apache Sedona spatial indexing capabilities. As
the number of threads doubled, execution time approximately halved as well, except for
16 threads, which performed just as well as 8 threads, at around 2 minutes.

Finally, for motif labeling, we use H3Tessellation directly instead of using the
stored tessellation, performing the following steps. Trajectory data is loaded into memory,
then transformed to tile-stay representation, and later to tile-move. MotifLabeling is
then executed to identify daily motifs, which are then grouped for each user, counted and
sorted from the most frequent to the least. The final result is written to disk as CSV files.
A total of 2746 unique motifs were identified, with 3.8 unique motifs per user on average.
The five most frequent motifs were AB (49.7%), ABA (13.3%), ABC (12.9%), ABCD (3.6%)
and ABCA (2.5%).

Now in the order of seconds, Figure 9 shows an inversely proportional relationship
between the level of parallelism and execution time. While a single thread takes about 60
seconds to perform its task, 16 threads take no longer than 10 seconds to execute. This
demonstrates the efficiency of Sendas, which was designed and implemented following
Big Data techniques, in comparison to single-threaded traditional solutions.

Figure 9. Running time for motif labeling in seconds.

6. Conclusions and future directions
In this work, we proposed Sendas, a new Scala library built on top of Apache Spark and
Apache Sedona, providing scalable implementations of trajectory data analysis and trans-
formation algorithms. The technical contribution of our work is a scalable and flexible
library to process mobility datasets and extract useful knowledge from them. We assess
the performance of Sendas running for different levels of parallelism, finding improve-
ments from 4 to 6 times when compared to non-parallel execution.

The scientific contributions of this work are two-fold. We add a temporal dimen-
sion to flow calculation to turn the results more flexible. As for motif extraction, we de-
fined more strictly what motifs mean in the mobility context, enabling an asymptotically
less complex method for temporal graph isomorphism. These contributions are relevant
to the research community in the area of human mobility and communications.

Other future developments in the library include expanding the available analysis
and transformation methods to match those of similar packages like scikit-mobility and
MovingPandas. Adding convenient plotting features for Scala practitioners, since many
visualization tools have been implemented and long adopted for Python and R, is also an
important improvement.

Acknowledgements
This work was supported by Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq), and by the Universidade Federal de Viçosa (UFV) Cluster.

References
Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R. James, Maxime Lenor-

mand, Thomas Louail, Ronaldo Menezes, José J. Ramasco, Filippo Simini, and Mar-
cello Tomasini. Human mobility: Models and applications. Physics Reports, 734:1–74,
2018. ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2018.01.001.

Isaac Brodsky. H3: Uber’s Hexagonal Hierarchical Spatial Index, 2018. URL https:
//github.com/uber/h3.

Anita Graser. MovingPandas: Efficient structures for movement data in Python.
GI_Forum – Journal of Geographic Information Science 2019, 7:54–68, 2019. doi:
10.1553/giscience2019_01_s54.

Yogesh Kumar Gupta and Surbhi Kumari. A study of Big Data Analytics using Apache
Spark with Python and Scala. In 2020 3rd International Conference on Intelligent

https://github.com/uber/h3
https://github.com/uber/h3

Sustainable Systems (ICISS), pages 471–478, 2020. doi: 10.1109/ICISS49785.2020.
9315863.

Keung-yeup Ji and Youngmi Kwon. Performance comparison of Python and Scala APIs
in Spark distributed cluster computing system. Journal of Korea Multimedia Society,
23(2):241–246, 2020.

Xiaoyi Jiang and Horst Bunke. Marked subgraph isomorphism of ordered graphs. In Joint
IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR)
and Structural and Syntactic Pattern Recognition (SSPR), pages 122–131. Springer,
1998.

Kelsey Jordahl, JV den Bossche, J Wasserman, J McBride, J Gerard, M Fleischmann,
J Tratner, et al. Geopandas/geopandas: V0. 6.1. Zenodo. doi, 2019.

Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki. Tempo-
ral motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and
Experiment, 2011(11):P11005, 2011.

Y.C Lee, Z.L Li, and Y.L Li. Taxonomy of space tessellation. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 55(3):139–149, 2000. ISSN 0924-2716. doi:
https://doi.org/10.1016/S0924-2716(00)00015-0.

Da Lei, Xuewu Chen, Long Cheng, Lin Zhang, Satish V Ukkusuri, and Frank Witlox.
Inferring temporal motifs for travel pattern analysis using large scale smart card data.
Transportation Research Part C: Emerging Technologies, 120:102810, 2020.

Wes McKinney et al. Data structures for statistical computing in python. In Proceedings
of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

Raul Montoliu, Jan Blom, and Daniel Gatica-Perez. Discovering places of interest in
everyday life from smartphone data. Multimedia Tools And Applications, 62(1):29.
179–207, 2013. doi: 10.1007/s11042-011-0982-z.

Mehdi Moradi, Edzer Pebesma, and Jorge Mateu. trajectories: Classes and methods for
trajectory data. Journal of Statistical Software, 2018.

Luca Pappalardo, Filippo Simini, Gianni Barlacchi, and Roberto Pellungrini. scikit-
mobility: a Python library for the analysis, generation and risk assessment of mobility
data, 2021.

Christian M Schneider, Vitaly Belik, Thomas Couronné, Zbigniew Smoreda, and Marta C
González. Unravelling daily human mobility motifs. Journal of The Royal Society
Interface, 10(84):20130246, 2013.

Xiaoli Sun, Yusong Tan, Qingbo Wu, Baozi Chen, and Changxiang Shen. Tm-miner: Tfs-
based algorithm for mining temporal motifs in large temporal network. IEEE Access,
7:49778–49789, 2019.

Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Spatial data management in Apache Spark:
The GeoSpark perspective and beyond. Geoinformatica, 23(1):37–78, 2019. ISSN
1384-6175. doi: 10.1007/s10707-018-0330-9.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15–
28, San Jose, CA, 2012. USENIX Association. ISBN 978-931971-92-8.

Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: Concepts,
methodologies, and applications. ACM Transaction on Intelligent Systems and Tech-
nology, 10 2014.

	Introduction
	Related Work
	Definitions
	Sendas
	TrajDataFrame
	Tessellation
	Trajectory analysis and processing
	FlowDataFrame
	MotifLabeling

	Performance Evaluation
	Conclusions and future directions

